

Run	Vol. Init (m3)	Vol. Final (m3)	Δ Vol. (m3)	Δ Time (min)	$\begin{gathered} \Delta P \\ (\mathrm{~mm} \mathrm{Hg}) \end{gathered}$	$\begin{gathered} \Delta H \\ (\text { in } \mathrm{H} 2 \mathrm{O}) \end{gathered}$
1	1	2	1	1.3610	3.2	2.00
2	3	4	1	0.9540	6.4	4.00
3	5	6	1	0.8460	7.9	5.00
4	7	8	1	0.8070	8.7	5.50
5	9	10	1	0.6630	12.7	8.00

Data Tabulation					
$\begin{aligned} & \text { Vstd } \\ & \text { (m3) } \end{aligned}$	$\begin{gathered} \text { Qstd } \\ \text { (x-axis) } \end{gathered}$	$\begin{gathered} \sqrt{\Delta H\left(\frac{P a}{P s t d}\right)\left(\frac{T s t d}{T a}\right)} \\ (y \text {-axis }) \end{gathered}$	Va	$\begin{gathered} \text { Qa } \\ \text { (x-axis) } \end{gathered}$	$\sqrt{\begin{array}{c} \Delta H(\mathrm{Ta} / \mathrm{Pa}) \\ (\mathrm{y} \text {-axis }) \end{array}}$
0.9930	0.7296	1.4123	0.9957	0.7316	0.8868
0.9888	1.0365	1.9973	0.9915	1.0393	1.2541
0.9868	1.1664	2.2330	0.9895	1.1696	1.4021
0.9857	1.2215	2.3420	0.9884	1.2248	1.4705
0.9804	1.4788	2.8246	0.9831	1.4828	1.7735
QSTD	m=	1.88375	QA	m=	1.17957
	$\mathrm{b}=$	0.03970		$\mathrm{b}=$	0.02493
	r=	0.99998		r=	0.99998

Calculations	
Vstd= $4 \mathrm{Vol}($ (Pa- $\Delta \mathrm{P}) / \mathrm{Pstd})(\mathrm{Tstd} / \mathrm{Ta})$	$\mathrm{Va}=\mid \mathrm{VVol}((\mathrm{Pa}-\Delta \mathrm{P}) / \mathrm{Pa})$
Qstd $=$ Vstd/ $/$ Time	$Q a=V a / \Delta T i m e$
For subsequent flow rate calculations:	
$\text { Qstd }=1 / m\left(\left(\sqrt{\Delta H\left(\frac{P_{a}}{P_{s t d}}\right)\left(\frac{T \text { std }}{T a}\right)}\right)-b\right)$	$Q a=1 / m((\sqrt{\Delta H(T a / P a)})-b)$

Standard Conditions	
Tstd:	$298.15{ }^{\circ} \mathrm{K}$
Pstd:	760 mm Hg
Key	
$\Delta \mathrm{H}:$ calibrator manometer reading (in H2O)	
$\Delta \mathrm{P}:$ rootsmeter manometer reading $(\mathrm{mm} \mathrm{Hg})$	
Ta: actual absolute temperature $\left({ }^{\circ} \mathrm{K}\right)$	
Pa: actual barometric pressure $(\mathrm{mm} \mathrm{Hg})$	
b: intercept	
m : slope	

RECALIBRATION
US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc.

Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA2a	Calbration Date	$:$
Equipment no.	$:$	HVSO02	Calbration Due Date	$:$

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition					
Temperature, $\mathbf{T}_{\mathbf{a}}$	302	Kelvin	Pressure, \mathbf{P}_{a}	1006	mmHg

Orifice Transfer Standard Information					
Equipment No.	3166	Slope, m_{c}	2.08877	Intercept, bc	-0.02270
Last Calibration Date	17-Jul-20	$\left(H \times P_{a} / 1013.3 \times 298 / T_{a}\right)^{1 / 2}$			
Next Calibration Date	17-Jul-21	$=m_{c} \times Q_{s t d}+b_{c}$			

Calibration of TSP						
Calibration Point	Manometer Reading H (inches of water)			$\begin{gathered} \mathbf{Q}_{\text {std }} \\ \left(\mathrm{m}^{3} / \min .\right) \\ \mathbf{X} \text {-axis } \end{gathered}$	Continuous Flow Recorder, W (CFM)	$\begin{gathered} \text { IC } \\ \left(\mathrm{W}\left(\mathrm{P}_{\mathrm{a}} / 1013.3 \times 298 / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2} / 35.31\right) \\ \mathbf{Y} \text {-axis } \end{gathered}$
1	4.1	4.1	8.2	1.3678	55	54.4374
2	3.3	3.3	6.6	1.2282	50	49.4885
3	2.6	2.6	5.2	1.0914	45	44.5397
4	2.2	2.2	4.4	1.0048	38	37.6113
5	1.5	1.5	3.0	0.8316	30	29.6931

By Linear Regression of Y on X

Slope, m	$=$
Correlation Coefficient	$=47.0579$
Calibration Accepted	$=\frac{0.9913}{\mathrm{Yes} / \mathrm{Ae}^{* *}}$

> Intercept, b =
\qquad
ation Coefficient
\qquad

* if Correlation Coefficient <0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	Sam Lam	Checked by	:	James Chu
Date	06-Jul-21	Date	:	06-Jul-21

Calibration Data for High Volume Sampler (TSP Sampler)

Location	$:$	CMA2a	Calbration Date	$:$
Equipment no.	$:$	HVSO02	Calbration Due Date	$:$

CALIBRATION OF CONTINUOUS FLOW RECORDER

Ambient Condition					
Temperature, \mathbf{T}_{a}	301.7	Kelvin	Pressure, \mathbf{P}_{a}	1010	mmHg

Orifice Transfer Standard Information					
Equipment No.	3880	Slope, m_{c}	2.08437	Intercept, bc	-0.01508
Last Calibration Date	03-Feb-21	$\left(H \times P_{a} / 1013.3 \times 298 / T_{a}\right)^{1 / 2}$			
Next Calibration Date	03-Feb-22	$=\quad m_{c} \times Q_{s t d}+b_{c}$			

Calibration of TSP						
Calibration Point	Manometer Reading H (inches of water)			$\begin{gathered} \mathbf{Q}_{\text {std }} \\ \left(\mathrm{m}^{3} / \min .\right) \\ \mathbf{X} \text {-axis } \end{gathered}$	Continuous Flow Recorder, W (CFM)	$\begin{gathered} \text { IC } \\ \left(\mathrm{W}\left(\mathrm{P}_{\mathrm{a}} / 1013.3 \times 298 / \mathrm{T}_{\mathrm{a}}\right)^{1 / 2} / 35.31\right) \\ \mathbf{Y} \text {-axis } \end{gathered}$
1	1.3	1.3	2.6	0.7748	29	28.7732
2	1.8	1.8	3.6	0.9104	35	34.7263
3	2.7	2.7	5.4	1.1134	48	47.6247
4	3.7	3.7	7.4	1.3021	52	51.5934
5	4.7	4.7	9.4	1.4667	63	62.5074

By Linear Regression of Y on X

Slope, m	$=$
Correlation Coefficient	$=47.4554$
Calibration Accepted	$=\frac{0.9907}{\mathrm{Yes} / \mathrm{Ae}^{* *}}$

> Intercept, b =
\qquad

* if Correlation Coefficient < 0.990, check and recalibration again.
** Delete as appropriate.

Remarks : \qquad

Calibrated by	Garry Yu	Checked by	James Chu
Date	01-Sep-21	Date	01-Sep-21

CERTIFICATE OF CALIBRATION

Certificate No．：	20CA111		Page	1	of	2
Item tested						
Description： Manufacturer： Type／Model No．： Serial／Equipment No．： Adaptors used：	Sound Le Larson D 831 0004627 -	pe 1）	Microphone			
Item submitted by						
Customer Name： Address of Customer： Request No．： Date of receipt：	Lam Envir 19-Nov-2	rvices Limit				
Date of test：	20－Nov－2020					
Reference equipment used in the calibration						
Description： Multi function sound calibrator	Model： B\＆K 4226	Serial No． 2288444	Expiry Date： 23－Aug－2021		Trac CIGIS	
Signal generator	DS 360	61227	24－Dec－2020		CEPR	

Ambient conditions

Temperature：	$22 \pm 1^{\circ} \mathrm{C}$
Relative humidity：	$55 \pm 10 \%$
Air pressure：	$1005 \pm 5 \mathrm{hPa}$

Test specifications

1，The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580：Part 1： 1997 and the lab calibration procedure SMTP004－CA－152．
2，The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of $\pm 20 \%$ ．
3，The acoustic calibration was performed using an B\＆K 4226 sound calibrator and corrections was applied for the difference between the free－field and pressure responsess of the Sound Level Meter．

Test results

This is to certify that the Sound Level Meter conforms to BS 7580：Part 1： 1997 for the conditions under which the test was performed．

Details of the performed measurements are presented on page 2 of this certificate．
Actual Measurement data are documented on worksheets．

Date：21－Nov－2020 Company Chop：

Comments：The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long－term stability of the instrument．The results apply to the item as received．

[^0]CERTIFICATE OF CALIBRATION
（Continuation Page）
Certificate No．：\quad 20CA1119 02－02 \quad Page 2
1，Electrical Tests
The electrical tests were perfomed using an equivalent capacitance substituted for the microphone．The results are given in below with test status and the estimated uncertainties．The＂Pass＂means the result of the test is inside the tolerances stated in the test specifications．The＂－＂means the result of test is outside these tolerances．

Test：	Subtest：	Status：	Expanded Uncertanity（dB）	Coverage Factor
Self－generated noise	A	Pass	0.3	
	C	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range，Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range，Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100μ s rectangular pulse	Pass	0.3	
R．M．S．accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor $1 / 10^{3}$ at 4 kHz	Pass	0.3	
	1 ms burst duty factor $1 / 10^{4}$ at 4 kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2，Acoustic tests
The complete sound level meter was calibrated on the reference range using a B\＆K 4226 acoustic calibrator with 1000 Hz and SPL 94 dB ．The sensitivity of the sound level meter was adjusted．The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties．

Test：	Subtest	Status	Expanded Uncertanity（dB）
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5
Response to associater sound calibrator			

The expanded uncertainties have been calculated in accordance with the ISO Publication＂Guide to the expression of uncertainty in measurement＂，and gives an interval estimated to have a level of confidence of 95% ．A coverage factor of 2 is assumed unless explicitly stated．

The standard（s）and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule tolmaintain the required accuracy level．

Sound level meter type： Microphone type：	831 -	Serial No． Serial No．	0004627 -	Date 20－Nov－2020
			Report：20CA1119 02－02	

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance．

Noise level in A weighting	16.4	$d B$
Noise level in C weighting	18.5	$d B$
Noise level in Lin	26.2	$d B$

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz ．The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level．And until within 5 dB of the upper and lower limits of the reference range，the measurements shall be made at 1 dB intervals．（SLM set to LEQ／SPL）

Reference／Expected level	Actual level		Tolerance	Deviation	
	non－integrated	integrated		non－integrated	integrated
dB	dB	dB	＋／－dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
124.0	124.0	124.0	0.7	0.0	0.0
129.0	129.0	129.0	0.7	0.0	0.0
134.0	134.0	134.0	0.7	0.0	0.0
135.0	135.0	135.0	0.7	0.0	0.0
136.0	136.0	136.0	0.7	0.0	0.0
137.0	137.0	137.0	0.7	0.0	0.0
138.0	138.0	138.0	0.7	0.0	0.0
139.0	139.0	139.0	0.7	0.0	0.0
140.0	140.0	140.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	74.0	74.0	0.7	0.0	0.0
69.0	69.0	69.0	0.7	0.0	0.0
64.0	64.0	64.0	0.7	0.0	0.0
59.0	59.0	59.0	0.7	0.0	0.0
54.0	54.0	54.0	0.7	0.0	0.0
49.0	49.0	49.0	0.7	0.0	0.0
44.0	44.0	44.0	0.7	0.0	0.0
39.0	39.0	39.0	0.7	0.0	0.0

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
$20-140$	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference／Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
$20-140$	30.0	30.1	0.7	0.1
	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz ．The signal level at 1000 Hz is set to give an indication of the reference SPL．

Frequency weighting A：

Frequency	Ref．level	Expected level	Actual level	Tolerance（ dB$)$		Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.6	1.5	1.5	0.0
63.1	94.0	67.8	67.8	1.5	1.5	0.0
125.9	94.0	77.9	77.9	1.0	1.0	0.0
251.2	94.0	85.4	85.4	1.0	1.0	0.0
501.2	94.0	90.8	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.0	1.0	1.0	0.0
7943.0	94.0	92.9	92.9	1.5	3.0	0.0
12590.0	94.0	89.7	89.7	3.0	6.0	0.0

Frequency weighting C ：

Frequency	Ref．level	Expected level	Actual level	Tolerance（dB）		Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	91.0	1.5	1.5	0.0
63.1	94.0	93.2	93.2	1.5	1.5	0.0
125.9	94.0	93.8	93.8	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	93.8	93.9	1.0	1.0	0.1

Sound level meter type：		831		Serial No． Serial No．	0004627		Date	20－Nov－2020	
Microphone	type：	－			－				
						Report	20CA1119 02－02		
3981.0	94.0		93.2		93.2	1.0	1.0	0.0	
7943.0	94.0		91.0	91.0	1.5	3.0	0.0		
12590.0	94.0		87.8	87.8	3.0	6.0	0.0		

Frequency weighting Lin：

Frequency	Ref．level	Expected level	Actual level	Tolerance (dB)		Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	94.0	1.5	1.5	0.0
63.1	94.0	94.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	94.0	1.0	1.0	0.0
7943.0	94.0	94.0	94.1	1.5	3.0	0.1
12590.0	94.0	94.0	94.0	3.0	6.0	0.0

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous．（Weight A，Maximum hold）

Ref．level	Expected level	Actual level	Tolerance（dB）		Deviation
dB	dB	dB	+	-	dB
136.0	135.0	134.9	1.0	1.0	-0.1

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous．（Weight A，Maximum hold）

Ref．level	Expected level	Actual level	Tolerance（dB）		Deviation
dB	dB	dB	+	-	dB
136.0	131.9	131.8	1.0	1.0	-0.1

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude．The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range． Positive polarities：（Weighting Z，set the generator signal to single，Lzpeak）

Ref．level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
139.0	139.0	139.6	2.0	0.6

Negative polarities：

綜 合 試 驗 有 限 公 司
SOILS \＆MATERIALS ENGINEERING CO．，LTD．
香 港 新 界 葵 涌 永 基 路 2 2－2 4 號好爸爸創科大廈

Sound level meter type：	831	Serial No．	0004627	Date 20－Nov－2020	
Microphone type：	-	Serial No．	-		

Report：20CA1119 02－02

Ref．level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
139.0	139.0	139.6	2.0	0.6

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.
Test frequency：$\quad 2000 \mathrm{~Hz}$
Amplitude：$\quad 2 \mathrm{~dB}$ below the upper limit of the primary indicator range．
Burst repetition frequency：$\quad 40 \mathrm{~Hz}$
Tone burst signal：
11 cycles of a sine wave of frequency 2000 Hz ．（Set to INT）

Expected level	Tone burst signal	Tolerance	Deviation
dB	indication (dB)	$+/-\mathrm{dB}$	dB
138.0	138.0	0.5	0.0

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range（Set the SLM to LAlmax）
Test frequency：$\quad 2000 \mathrm{~Hz}$
Amplitude：The upper limit of the primary indicator range．
Single sinusoidal burst of duration 5 ms ：

Ref．Level	Single burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	$+/-\mathrm{dB}$	dB
140.0	131.2	131.1	2.0	-0.1

Repeated at 100 Hz

Ref．Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	$+/-\mathrm{dB}$	dB
140.0	137.3	137.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level．The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity．
Frequency of tone burst：$\quad 4000 \mathrm{~Hz}$
Duration of tone burst： 1 ms

Repetition Time	Level of tone burst	Expected Leq	Actual Leq	Tolerance	Deviation	Remarks
msec	dB	dB	dB	$+/-\mathrm{dB}$	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60 s integ．
10000	100.0	100.0	99.9	1.0	-0.1	6 min．integ．

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range
Test frequency：$\quad 4000 \mathrm{~Hz}$
Integration time： 10 sec
The integrating sound level meter set to Leq：

綜 合 試 驗 有 限 公 司

Sound level m	type： 831		Serial No．	0004627	Date 2	20－Nov－2020
Microphone	type：		Serial No．	－		
					Report： 2	20CA1119 02－02
Duration	Rms level of	Expected	Actual	Tolerance	Deviation	
msec	tone burst（ dB ）	dB	dB	＋／－dB	dB	
10	110.0	80.0	79.9	1.7	－0．1	

The integrating sound level meter set to SEL：

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	$+/-\mathrm{dB}$	dB
10.0	110.0	90.0	90.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non－integrating mode．
Test frequency：$\quad 2000 \mathrm{~Hz}$
Amplitude：
Burst repetition frequency： 40 Hz
Tone burst signal：$\quad 11$ cycles of a sine wave of frequency 2000 Hz ．

Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
138.3	137.3	134.3	3.0	1.0	0.0

For integrating SLM，with the instrument indicating Leq．
For integrating SLM，with the instrument indicating Leq and set to the reference range．The test signal as following：
The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range
Test frequency：$\quad 4000 \mathrm{~Hz}$
Integration time：$\quad 10 \mathrm{sec}$
Single burst duration： 1 msec

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
145.1	144.1	104.1	104.0	2.2	-0.1

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B\＆K type 4226 Multifunction Acoustic Calibrator．The test is performed in A weighting．

Frequency	Expected level	Actual level	Tolerance (dB)		Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.1	1.0	1.0	0.2
8000	92.9	92.0	1.5	3.0	-0.9

\qquad He
HCKLAS 028

CERTIFICATE OF CALIBRATION

Certificate No．：	21CA0222 03	Page	1 of
Item tested			
Description：	Sound Level Meter（Class 1）	Microphone	Preamp
Manufacturer：	B \＆K	B \＆K	B \＆K
Type／Model No．：	2250	4189	ZC0032
Serial／Equipment No．：	2701778	2755097	19223
Adaptors used：	-	-	-
Item submitted by			
Customer Name：	Lam Geotechnics Limited．		
Address of Customer： - Request No．： - Date of receipt： 22－Feb－2021			
Date of test：	23－Feb－2021		

Reference equipment used in the calibration

Description：	Model：	Serial No．	Expiry Date：	Traceable to：
Multi function sound calibrator	B\＆K 4226	2288444	$23-$ Aug－2021	CIGISMEC
Signal generator	DS 360	33873	$19-M a y-2021$	CEPREI

Ambient conditions

Temperature：	$22 \pm 1^{\circ} \mathrm{C}$
Relative humidity：	$55 \pm 10 \%$
Air pressure：	$1000 \pm 5 \mathrm{hPa}$

Test specifications

1．The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580：Part 1： 1997 and the lab calibration procedure SMTP004－CA－152．
2，The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of $\pm 20 \%$ ．
3，The acoustic calibration was performed using an B\＆K 4226 sound calibrator and corrections was applied for the difference between the free－field and pressure responsess of the Sound Level Meter．

Test results

This is to certify that the Sound Level Meter conforms to BS 7580：Part 1：1997 for the conditions under which the test was performed．

Details of the performed measurements are presented on page 2 of this certificate．

Comments：The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long－term stability of the instrument．The results apply to the item as received．

綜合試驗有限公司
SOILS \＆MATERIALS ENGINEERING CO．，LTD．
香港新界葵涌永基路 22－24 號好爸爸創科大廈
Good Ba Ba Hitech Building，Nos．22－24 Wing Kei Road，Kwai Chung，New Territories，Hong Kong
Tel：（852） 28736860 Fax：（852） 25557533 E－mall：smec＠cigismec．com Website：www．cigismec．com
HOKUAS 028

CERTIFICATE OF CALIBRATION

（Continuation Page）
Certificate No．：21CA022203 Page 2 of 2

1，Electrical Tests
The electrical tests were perfomed using an equivalent capacitance substituted for the microphone．The results are given in below with test status and the estimated uncertainties．The＂Pass＂means the result of the test is inside the tolerances stated in the test specifications．The＂－＂means the result of test is outside these tolerances．

Test：	Subtest：	Status：	Expanded Uncertanity（dB）	Coverage Factor
Self－generated noise	A	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range，Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range，Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100μ s rectangular pulse	Pass	0.3	
R．M．S．accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor $1 / 10^{3}$ at 4 kHz	Pass	0.3	
	1 ms burst duty factor $1 / 10^{4}$ at 4 kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2，Acoustic tests

The complete sound level meter was calibrated on the reference range using a B\＆K 4226 acoustic calibrator with 1000 Hz and SPL 94 dB ．The sensitivity of the sound level meter was adjusted．The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties．

Test：	Subtest	Status	Expanded Uncertanity（dB）
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3，Response to associated sound calibrator
N／A

The expanded uncertainties have been calculated in accordance with the ISO Publication＂Guide to the expression of uncertainty in measurement＂，and gives an interval estimated to have a level of confidence of 95% ．A coverage factor of 2 is assumed unless explicitly stated．

The standard（s）and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level．

Test Data for Sound Level Meter
Page 1 of 5

Sound level meter type：	2250	Serial No．	2701778	Date	23－Feb－2021	
Microphone	type：	4189	Serial No．	2755097		
Preamp	type：	ZC0032		Serial No．	19223	Report：21CA0222 03

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance．

Noise level in A weighting	12.6	$d B$
Noise level in C weighting	13.8	$d B$
Noise level in Lin	20.0	$d B$

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz ．The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level．And until within 5 dB of the upper and lower limits of the reference range，the measurements shall be made at 1 dB intervals．（SLM set to LEQ／SPL）

Reference／Expected level	Actual level		Tolerance	Deviation	
	non－integrated	integrated		non－integrated	integrated
dB	dB	dB	＋／－dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
124.0	124.0	124.0	0.7	0.0	0.0
129.0	129.0	129.0	0.7	0.0	0.0
134.0	134.0	134.0	0.7	0.0	0.0
135.0	135.0	135.0	0.7	0.0	0.0
136.0	136.0	136.0	0.7	0.0	0.0
137.0	137.0	137.0	0.7	0.0	0.0
138.0	138.0	138.0	0.7	0.0	0.0
139.0	139.0	139.0	0.7	0.0	0.0
140.0	140.0	140.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	74.0	74.0	0.7	0.0	0.0
69.0	69.0	69.0	0.7	0.0	0.0
64.0	64.0	64.0	0.7	0.0	0.0
59.0	59.0	59.0	0.7	0.0	0.0
54.0	54.0	54.0	0.7	0.0	0.0
49.0	49.0	49.0	0.7	0.0	0.0
44.0	44.0	44.0	0.7	0.0	0.0
39.0	39.0	39.0	0.7	0.0	0.0

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
$20-140$	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference／Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
$20-140$	30.0	30.0	0.7	0.0
	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz ．The signal level at 1000 Hz is set to give an indication of the reference SPL．

Frequency weighting A ：

Frequency	Ref．level	Expected level	Correction of electrical response	Actual level	Tolerance（dB）	
Hz	dB	dB	dB	dB	+	-
1000.0	94.0	94.0	0.0	94.0	0.0	0.0
31.6	94.0	54.6	$\mathrm{~N} / \mathrm{A}$	54.6	1.5	1.5
63.1	94.0	67.8	0.0	67.8	1.5	1.5
125.9	94.0	77.9	0.0	77.9	1.0	1.0
251.2	94.0	85.4	0.0	85.4	1.0	1.0
501.2	94.0	90.8	0.0	90.7	1.0	1.0
1995.0	94.0	95.2	0.0	95.2	1.0	1.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0
12590.0	94.0	89.7	-0.3	89.4	3.0	0.0

Frequency weighting C ：

Frequency	Ref．level	Expected level	Correction of electrical response	Actual level	Tolerance（dB）	Deviation＊	
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	$\mathrm{~N} / \mathrm{A}$	91.1	1.5	1.5	0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

Sound level meter type：		2250		Serial No．	2701778		Date	23－Feb－2021
Microphone	type：	4189		Serial No．				
Preamp	type：	ZC0032		Serial No．			Report：	21CA0222 03
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	－0．1	93.1	1.0	1.0	0.0	
7943.0	94.0	91.0	－0．3	90.7	1.5	3.0	0.0	
12590.0	94.0	87.8	－0．3	87.5	3.0	6.0	0.0	

Frequency weighting Lin：

Frequency	Ref．level	Expected level	Correction of electrical response	Actual level	Tolerance（dB）	Deviation＊	
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	$\mathrm{~N} / \mathrm{A}$	94.1	1.5	1.5	0.1
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	94.0	1.0	1.0	0.1
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590.0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

＊Deviation＝Actual level $-($ Expected level + Correction of electrical response）
The correction of electrical response is specified in the Table A． 2 of technical documentation of BE $1712-21$ ．The maximum expanded uncertainty of correction of electrical response is 0.29 dB ．

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous．
（Weight A，Maximum hold）

Ref．level	Expected level	Actual level	Tolerance (dB)		Deviation
dB	dB	dB	+	-	dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous．

Ref．level	Expected level	Actual level	Tolerance (dB)	Deviation	
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us

Sound level meter type：	2250	Serial No．	2701778	Date	23－Feb－2021	
Microphone	type：	4189	Serial No．	2755097		
Preamp	type：	ZC0032	Serial No．	19223	Report：21CA0222 03	

rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude．The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range． Positive polarities：（Weighting C ，set the generator signal to single，Lcpeak）

Ref．level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
119.0	119.0	119.6	2.0	0.6

Negative polarities：

Ref．level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
119.0	119.0	119.6	2.0	0.6

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.
Test frequency：$\quad 2000 \mathrm{~Hz}$
Amplitude：$\quad 2 \mathrm{~dB}$ below the upper limit of the primary indicator range．
Burst repetition frequency：$\quad 40 \mathrm{~Hz}$
Tone burst signal：$\quad 11$ cycles of a sine wave of frequency 2000 Hz ．（Set to INT）

Time wighting	Ref．Level	Expected level	Tone burst signal	Tolerance	Deviation
	dB	dB	indication (dB)	$+/-\mathrm{dB}$	dB
	$118.0+6.6$	118.0	117.9	0.5	-0.1

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range（Set the SLM to LAImax）
Test frequency：
2000 Hz
Amplitude：
The upper limit of the primary indicator range．
Single sinusoidal burst of duration 5 ms ：

Ref．Level	Single burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	$+/-\mathrm{dB}$	dB
120.0	111.2	111.2	2.0	0.0

Repeated at 100 Hz

Ref．Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	$+/-\mathrm{dB}$	dB
120.0	117.3	117.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level．The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity．
Frequency of tone burst：$\quad 4000 \mathrm{~Hz}$

Duration of tone burst： 1 ms						
Repetition Time	Level of tone burst	Expected Leq	Actual Leq	Tolerance	Deviation	Remarks
msec	dB	dB	dB	$+/-\mathrm{dB}$	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60 s integ．
10000	100.0	100.0	99.9	1.0	-0.1	6 min．integ．

Sound level meter type：	2250	Serial No．	2701778	Date	23－Feb－2021	
Microphone	type：	4189	Serial No．	2755097		
Preamp	type：	ZC0032	Serial No．	19223	Report：21CA0222 03	

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency：	4000 Hz
Integration time：	10 sec

The integrating sound level meter set to Leq：

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	$+/-\mathrm{dB}$	dB
10	110.0	80.0	80.0	1.7	0.0

The integrating sound level meter set to SEL：

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	$+/-\mathrm{dB}$	dB
10.0	110.0	90.0	90.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non－integrating mode．

Test frequency：
Amplitude：
Burst repetition frequency：
Tone burst signal：

2000 Hz
2 dB below the upper limit of the primary indicator range．
40 Hz
11 cycles of a sine wave of frequency 2000 Hz ．

Further reduced	Difference	Tolerance

ance	Deviation
B	$d B$

For integrating SLM，with the instrument indicating Leq．
For integrating SLM，with the instrument indicating Leq and set to the reference range．The test signal as following：
The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range
Test frequency：
4000 Hz
Integration time：$\quad 10 \mathrm{sec}$
Single burst duration： 1 msec

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload（dB）	1 dB	dB	dB	dB	dB
141.6	140.6	100.6	100.6	2.2	0.0

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B\＆K type 4226
Multifunction Acoustic Calibrator．The test is performed in A weighting．

Frequency	Expected level	Actual level	Tolerance (dB)		Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.0	1.0	1.0	0.1
8000	92.9	91.9	1.5	3.0	-1.0

CERTIFICATE OF CALIBRATION

Certificate No．：	21 CA0429 02		Page	1
Item tested				
Description：	Sound Level Meter（Type 1）	Microphone	Preamp	
Manufacturer：	B \＆K	B \＆K	B \＆K	
Type／Model No．：	$2250-\mathrm{L}$	4950	ZC0032	
Serial／Equipment No．：	2722311	2698703	13321	
Adaptors used：	-	-	-	

Item submitted by	
Customer Name：	Lam Geotechnics L．td．
Address of Customer：	-
Request No．：	-
Date of receipt：	29－Apr－2021

Date of test：30－Apr－2021

Reference equipment used in the calibration

Description：	Model：	Serial No．	Expiry Date：	Traceable to：
Multi function sound calibrator	B\＆K 4226	2288444	$23-A u g-2021$	CIGISMEC
Signal generator	DS 360	61227	19－May－2021	CEPREI

Ambient conditions

Temperature：	$22 \pm 1{ }^{\circ} \mathrm{C}$
Relative humidity：	$55 \pm 10 \%$
Air pressure：	$1005 \pm 5 \mathrm{hPa}$

Test specifications

1，The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580：Part 1： 1997 and the lab calibration procedure SMTP004－CA－152．
2，The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of $\pm 20 \%$ ．
3，The acoustic calibration was performed using an B\＆K 4226 sound calibrator and corrections was applied for the difference between the free－field and pressure responsess of the Sound Level Meter．

Test results

This is to certify that the Sound Level Meter conforms to BS 7580：Part 1： 1997 for the conditions under which the test was performed．

Details of the performed measurements are presented on page 2 of this certificate．
Actual Measurement data are documented on worksheets

Approved Signatory：

Date：03－May－2021
Company Chop：

Comments：The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long－term stability of the instrument．The results apply to the item as received．

CERTIFICATE OF CALIBRATION

（Continuation Page）
Certificate No．：21CA042902 \quad Page 2 of 2

1，Electrical Tests
The electrical tests were perfomed using an equivalent capacitance substituted for the microphone．The results are given in below with test status and the estimated uncertainties．The＂Pass＂means the result of the test is inside the tolerances stated in the test specifications．The＂－＂means the result of test is outside these tolerances．

Test：	Subtest：	Status：	Expanded Uncertanity（dB）	Coverage Factor
Self－generated noise	A	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range，Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range，Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	C	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100μ s rectangular pulse	Pass	0.3	
R．M．S．accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor $1 / 10^{3}$ at 4 kHz	Pass	0.3	
	1 ms burst duty factor $1 / 10^{4}$ at 4 kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2，
Acoustic tests

The complete sound level meter was calibrated on the reference range using a B\＆K 4226 acoustic calibrator with 1000 Hz and SPL 94 dB ．The sensitivity of the sound level meter was adjusted．The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties．

Test：	Subtest	Status	Expanded Uncertanity（dB）
Acoustic response	Weighting A at 125 Hz		
	Weighting A at 8000 Hz	Pass	0.3
Fass	0.5		

3，Response to associated sound calibrator
N／A

The expanded uncertainties have been calculated in accordance with the ISO Publication＂Guide to the expression of uncertainty in measurement＂，and gives an interval estimated to have a level of confidence of 95% ．A coverage factor of 2 is assumed unless explicitly stated．

Checked by：

The standard（s）and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level．

Sound level meter type：	$2250-L$	Serial No．	2722311	Date 30 －Apr－2021	
Microphone	type：	4950	Serial No．	2698703	
Preamp	type：	ZC0032	Serial No．	13321	Report：21CA0429 02

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance．

Noise level in A weighting	13.4	$d B$
Noise level in C weighting	16.5	dB
Noise level in Lin	23.2	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz ．The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level．And until within 5 dB of the upper and lower limits of the reference range，the measurements shall be made at 1 dB intervals．（SLM set to LEQ／SPL）

Reference／Expected level	Actual level		Tolerance	Deviation	
	non－integrated	integrated		non－integrated	integrated
dB	dB	dB	＋／－dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
124.0	124.0	124.0	0.7	0.0	0.0
129.0	129.0	129.0	0.7	0.0	0.0
134.0	134.0	134.0	0.7	0.0	0.0
135.0	135.0	135.0	0.7	0.0	0.0
136.0	136.0	136.0	0.7	0.0	0.0
137.0	137.0	137.0	0.7	0.0	0.0
138.0	138.0	138.0	0.7	0.0	0.0
139.0	139.0	139.0	0.7	0.0	0.0
140.0	140.0	140.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	74.0	74.0	0.7	0.0	0.0
69.0	69.0	69.0	0.7	0.0	0.0
64.0	64.0	64.0	0.7	0.0	0.0
59.0	59.0	59.0	0.7	0.0	0.0
54.0	54.0	54.0	0.7	0.0	0.0
49.0	49.0	49.0	0.7	0.0	0.0
44.0	43.9	43.9	0.7	－0．1	－0．1
39.0	39.0	39.0	0.7	0.0	0.0

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
$20-140$	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference／Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
$20-140$	30.0	30.0	0.7	0.0
	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz ．The signal level at 1000 Hz is set to give an indication of the reference SPL．

Frequency weighting A ：

Frequency	Ref．level	Expected level	Correction of electrical response	Actual level	Tolerance（dB）	Deviation＊	
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	$\mathrm{~N} / \mathrm{A}$	54.5	1.5	1.5	-0.1
63.1	94.0	67.8	0.0	67.8	1.5	1.5	0.0
125.9	94.0	77.9	0.0	77.9	1.0	1.0	0.0
251.2	94.0	85.4	0.0	85.4	1.0	1.0	0.0
501.2	94.0	90.8	0.0	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	0.0	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0	0.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0	0.0
12590.0	94.0	89.7	-0.3	89.4	3.0	6.0	0.0

Frequency weighting C ：

Frequency	Ref．level	Expected level	Correction of electrical response	Actual level	Tolerance（dB）	Deviation＊	
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	$\mathrm{~N} / \mathrm{A}$	91.1	1.5	1.5	0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

Sound level	r type：	2250－L		Serial No．			Date	30－Apr－2021
Microphone Preamp	type： type：	$\begin{aligned} & 4950 \\ & \text { ZC0032 } \end{aligned}$		Serial No． Serial No．				21CA0429 02
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	－0．1	93.1	1.0	1.0	0.0	
7943.0	94.0	91.0	－0．3	90.7	1.5	3.0	0.0	
12590.0	94.0	87.8	－0．3	87.5	3.0	6.0	0.0	

Frequency weighting Lin：

Frequency	Ref．level	Expected level	Correction of electrical response	Actual level	Tolerance（dB）	Deviation＊	
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	$\mathrm{~N} / \mathrm{A}$	94.1	1.5	1.5	0.1
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	93.9	1.0	1.0	0.0
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590.0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

＊Deviation $=$ Actual level $-($ Expected level + Correction of electrical response $)$
The correction of electrical response is specified in the Table A． 2 of technical documentation of BE 1853－11．The maximum expanded uncertainty of correction of electrical response is 0.3 dB ．

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous．（Weight A，Maximum hold）

Ref．level	Expected level	Actual level	Tolerance（dB）		Deviation
dB	dB	dB	+	-	dB
136.0	135.0	135.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous．（Weight A，Maximum hold）

Ref．level	Expected level	Actual level	Tolerance（dB）	Deviation	
dB	dB	dB	+	-	dB
136.0	131.9	131.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude．The amplitude of the

Sound level meter type：	$2250-L$	Serial No．	2722311	Date 30 －Apr－2021		
Microphone	type：	4950	Serial No．	2698703		
Preamp	type：	ZC0032	Serial No．	13321	Report：21CA0429 02	

10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range．
Positive polarities：（Weighting C，set the generator signal to single，Lcpeak）

Ref．level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
139.0	139.0	137.5	2.0	-1.5

Negative polarities：

Ref．level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	$+/-\mathrm{dB}$	dB
139.0	139.0	137.5	2.0	-1.5

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequen		000 Hz			
Amplitude：		dB below the up	per limit of the prim	indicator	
Burst repetit	equency：	0 Hz			
Tone burst		1 cycles of a sin	wave of frequency	0 Hz ．	
	Ref．Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication（dB）	＋／－dB	dB
Slow	$118.0+6.6$	118.0	117.9	0.5	－0．1

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range（Set the SLM to LAImax）
Test frequency：$\quad 2000 \mathrm{~Hz}$
Amplitude：The upper limit of the primary indicator range．
Single sinusoidal burst of duration 5 ms ：

Ref．Level	Single burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	$+/-\mathrm{dB}$	dB
140.0	131.2	131.1	2.0	-0.1

Repeated at 100 Hz

Ref．Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	$+/-\mathrm{dB}$	dB
140.0	137.3	137.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level．The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity．
Frequency of tone burst：$\quad 4000 \mathrm{~Hz}$
Duration of tone burst： 1 ms

Repetition Time	Level of tone burst	Expected Leq	Actual Leq	Tolerance	Deviation	Remarks
msec	dB	dB	dB	$+/-\mathrm{dB}$	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60 s integ．
10000	100.0	100.0	99.9	1.0	-0.1	6 min．integ．

Sound level meter type：	$2250-\mathrm{L}$	Serial No．	2722311	Date	30－Apr－2021	
Microphone	type：	4950	Serial No．	2698703		
Preamp	type：	ZC0032	Serial No．	13321	Report：21CA0429 02	

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency：	4000 Hz
Integration time：	10 sec

The integrating sound level meter set to Leq：

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	$+/-\mathrm{dB}$	dB
10	110.0	80.0	80.0	1.7	0.0

The integrating sound level meter set to SEL：

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	$+/-\mathrm{dB}$	dB
10.0	110.0	90.0	90.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non－integrating mode．

Test frequency：	2000 Hz
Amplitude：	2 dB below the upper limit of the primary indicator range．
Burst repetition frequency：	40 Hz
Tone burst signal：	11 cycles of a sine wave of frequency 2000 Hz.

Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
135.5	134.5	131.5	3.0	1.0	0.0

For integrating SLM，with the instrument indicating Leq．
For integrating SLM，with the instrument indicating Leq and set to the reference range．The test signal as following：
The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range
Test frequency：
4000 Hz
Integration time：
10 sec
Single burst duration： 1 msec

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload（dB）	1 dB	dB	dB	dB	dB
142.3	141.3	101.3	101.3	2.2	0.0

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B\＆K type 4226 Multifunction Acoustic Calibrator．The test is performed in A weighting．

Frequency	Expected level	Actual level	Tolerance (dB)	Deviation	
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.0	1.0	1.0	0.1
8000	92.9	93.6	1.5	3.0	0.7

HOTTINGER BRÜEL \＆KJ，居R

校 正 證 書

CALIBRATION CERTIFICATE

證書編號（Certificate No．）：HBKT－20210022
第 1 頁，共 17 頁（Page1 of 17）

委託單位：LAM Geotechnics Limited
Customer：
地 址：11／F Centre Point，181－185 Gloucester Road，Wanchai，Hong Kong S．A．R of China

Address：
儀器名稱：
Nexus調適放大器
Equipment：
型號規格：
2693－0S4
Model／Type：
製 造 商：
Bruel \＆Kjaer
Manufacture：
機 身 號：
2099340
Serial No．
接收日期：
2021－06－11
校正日期：
2021－06－22
Date of Recept \qquad Date of Cal．

批准日期：
2021－06－24
Date of Approve \qquad

台灣思百吉股份有限公司
Bruel \＆Kjaer
地址／Addr：台北市民生東路三段128號13樓之一
電話／Te1：＋886 225462988
網址／Website：www．bksv．cn／www．bksv．com

主 管
Approved by

審 核
Inspected by
校 正
Calibrated by

Bruel \＆Kjaer Division of Spectris Taiwan Limited
Bruel \＆Kjaer
13F－1，No．128，Sec．3，Min Sheng E．Road，Taipei City 105，Taiwan，R． O．C．
傳真／Fax：＋886 225462989

校正說明

Directions of Calibration

證書編號（Certificate No．）：HBKT－20210022
第 2 頁，共 17 頁（Page2 of 17）

1 本實驗室所出具的數據均可溯源到國家計量基準和國際單位制（SI）。
All data issued by this calibration laboratory are traceable to national primary standards and the International System of Unit（Sl）．

2 本次測量結果僅與被測件有關。
The measurement results are only related to the Unit Under Test．

3 本次校正的技術依據（Reference documents for the calibration）
本次校準依據 P＿2690＿A12 Bruel \＆Kjaer NEXUS 2690 麥克風输入型調適放大器校正程序 进行。 The calibration has been performed in accordance with P＿2690＿A12 Calibration Procedure for Nexus Range of conditioning Amplifiers Microphone Input．

4 本次校正所使用的主要測量標準（Main measurement standards used during the calibration）

設備名稱／型號	機身編號	不確定度或準確度等級或最大允許誤差	溯源至／證書編號	有效期至
Equipment／Model	Serial No．	Uncertainty or Accuracy Class or MPE	Traceable to／ Certificate No．	Due Date
Multimeter／ HP／3458A	2823A13040	$\begin{gathered} \text { AC Voltage } U_{\text {rel }} \quad(0.001 \% \\ \sim 0.016 \%), k=2 \\ \text { DC Voltage } U_{\text {rel }}(0.002 \% \\ \sim 0.225 \%), k=2 \end{gathered}$	財團法人台灣電子檢驗中心／21－01－ BAC－129－02L	2022－01－10

5 本次校正中主要校正參數的不磪定度分別是（The uncertainty of main measurement parameter）：詳見校正結果頁。Shown in the calibration result page．

6 校正地點（Place of the calibration）

HBK校準實驗室（臺灣）

7 校正環境條件（Environmental condition during the calibration）
溫度（Temperature）$\quad 23.2 \quad{ }^{\circ} \mathrm{C} \quad$ 相對溫度（Relative Humidity） $60.9 \quad \%$

Results of Calibration（continued page）

Channel Type：DELTATRON ZX 2693
Channel No： 1
All measurements made non floating on input and output．
Transducer sensitivity ： $1 \mathrm{~V} / \mathrm{V}$ ．
Calibrated output：
The gain from input to calibrated output，is calculated as measured output level， relative to measured input level．Levels are measured by means of a DMM．

Generator frequency： $\mathbf{1 k H z}$
When applying amplitudes below $31.62 \mathrm{mV}(90 \mathrm{dBuV})$ a 40 dB attenuator is used．
Nexus：HP 10Hz，LP 100 kHz
Output bandwidth limited with external 22.4 kHz LP filter．

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Input Level					
$100 \mathrm{mV} / \mathrm{ms}$－2	5．01187 Volt	V／ms－2	0.0989	0.1012	0.0997	0.0002
$316 \mathrm{mV} / \mathrm{ms}$－2	5．01187 Volt	V／ms－2	0.3126	0.3199	0.3154	0.0004
$1 \mathrm{~V} / \mathrm{ms}$－2	1．77828 Volt	V／ms－2	0.9886	1.0116	0.9976	0.0012
$3.16 \mathrm{~V} / \mathrm{ms}$－2	0．56234 Volt	V／ms－2	3.1261	3.1989	3.1546	0.0037
$10 \mathrm{~V} / \mathrm{ms}$－2	0．17783 Volt	V／ms－2	9.8855	10.1158	9.9860	0.0116
31.6 V／ms－2	0.05623 Volt	V／ms－2	31.2608	31.9890	31.5712	0.0693
$100 \mathrm{~V} / \mathrm{ms}$－2	0．01778 Volt	V／ms－2	98.8553	101.1579	99.6039	0.1152
316 V／ms－2	0．00562 Volt	V／ms－2	312.6079	319.8895	314.9737	0.3641
$1 \mathrm{kV} / \mathrm{ms}-2$	0．00178 Volt	V／ms－2	988.5531	1011.5795	998.0384	1.1514

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

校 正 結 果
Results of Calibration（continued page）

Lowpass filters：

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage．Levels are measured by means of a DMM．

Highpass filters：
The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage．Levels are measured by means of a DMM．

Input Level： 1 Volt（ 120 dBuV ）
Nexus：Sens． 1 V／ms－2（0 dB Gain），LP 100 kHz ．

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Frequency					
HP 0.1	0.1 Hz	\％	－14．89	－6．67	－2．26	＊
HP 0.1	0.5 Hz	\％	－1．14	1.16	－1．11	＊
HP 1	1.0 Hz	\％	－14．89	－6．67	－10．09	＊
HP 1	5．0 Hz	\％	－1．14	1.16	－0．60	＊
HP 10	10.0 Hz	\％	－14．89	－6．67	－10．62	0.42
HP 10	50.0 Hz	\％	－1．14	1.16	－0．52	0.12

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

Inherent noise：
The Inherent Noise is measured by connecting a short－circuit plug to the input， and measuring the output level by means of a DMM．

Nexus：Sens．10kV／Pa（80dB Gain），HP 10Hz，LP 100 kHz
Input shorted．
Output bandwidth limited with external A filter．

Parameter	Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
A weighted	uV		2.00	1.71	＊
Reference Generator： Measure output level from internal generator．					
Parameter	Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	＊
Test Tone	dBuV	0.00	0.00	0.00	＊

Distortion：
Generator signal： 127 dBuV（ 2.24 Volt）， $1 \mathbf{k H z}$
Nexus：Sens． 1 V／ms－2（0 dB Gain），HP 10Hz，LP 100 kHz
Basetone is rejected with a notchfilter．
Output of the notch filter is digitized with the HP3458A DMM，
and 2．harmonic and 3．harmonic is determined with a DFT．

| | Unit | Upper
 Limit | Measured | Calibration |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Parameter | Uncertainty | | | |

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

Channel Type：DELTATRON ZX 2693
 Channel No：

All measurements made non floating on input and output．
Transducer sensitivity： $1 \mathrm{~V} / \mathrm{V}$ ．

Calibrated output：
The gain from input to calibrated output，is calculated as measured output level， relative to measured input level．Levels are measured by means of a DMM．

Generator frequency： $\mathbf{1 k H z}$
When applying amplitudes below $31.62 \mathrm{mV}(90 \mathrm{dBuV})$ a 40 dB attenuator is used．
Nexus：HP 10 Hz, LP 100 kHz
Output bandwidth limited with external $22.4 \mathbf{k H z}$ LP filter．

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

Results of Calibration（continued page）

Lowpass filters：

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage．Levels are measured by means of a DMM．

Input Level： 1 Volt（ 120 dBu ）
Nexus：Sens． 1 V／ms－2（0 dB Gain）

（LP 100 k results not valid with WH 3219 option）					
Parameter	Unit	Limit Limer	Upper Limit	Measured Value	Calibration Uncertainty

Nexus setti		Frequency					
LP 0．1k	HP 1	20 Hz	\％	－1．14	1.16	－0．27	0.12
LP 0．1k	HP 1	100 Hz	\％	－14．89	－6．67	－11．00	0.42
LP 1 k	HP 10	200 Hz	\％	－1．14	1.16	－0．27	0.12
LP 1 k	HP 10	1000 Hz	\％	－14．89	－6．67	－11．08	0.42
LP 3k	HP 10	600 Hz	\％	－1．14	1.16	－0．26	0.12
LP 3 k	HP 10	3000 Hz	\％	－14．89	－6．67	－10．74	0.42
LP 10 k	HP 10	2000 Hz	\％	－1．14	1.16	－0．35	0.12
LP 10 k	HP 10	10000 Hz	\％	－14．89	－6．67	－11．39	0.42
LP 22．4k	HP 10	4480 Hz	\％	－1．14	1.16	－0．38	0.12
LP 22．4k	HP 10	22400 Hz	\％	－14．89	－6．67	－11．41	0.42
LP 30 k	HP 10	6000 Hz	\％	－1．14	1.16	－0．31	0.12
LP 30 k	HP 10	30000 Hz	\％	－14．89	－6．67	－10．58	0.42
LP 100 k	HP 10	20000 Hz	\％	－1．14	1.16	－0．11	0.12
LP 100 k	HP 10	60000 Hz	\％	－4．50	4.71	1.37	0.47
LP 100 k	HP 10	100000 Hz	\％	－18．72	－2．28	－12．97	0.62

Highpass filters：
The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage．Levels are measured by means of a DMM．

Input Level： 1 Volt（ 120 dBuV ）
Nexus：Sens． 1 V／ms－2（0 dB Gain），LP 100 kHz．

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Frequency					
HP 0.1	0.1 Hz	\％	－14．89	－6．67	－2．90	＊
HP 0.1	0.5 Hz	\％	－1．14	1.16	－1．16	＊
HP 1	1.0 Hz	\％	－14．89	－6．67	－10．22	＊
HP 1	5.0 Hz	\％	－1．14	1.16	－0．58	＊
HP 10	10.0 Hz	\％	－14．89	－6．67	－10．58	0.42
HP 10	50.0 Hz	\％	－1．14	1.16	－0．49	0.12

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory

Inherent noise：

The Inherent Noise is measured by connecting a short－circuit plug to the input， and measuring the output level by means of a DMM．

Nexus：Sens．10kV／Pa（80dB Gain），HP 10Hz，LP 100kHz
Input shorted．
Output bandwidth limited with external A filter．

| | Unit | Lower
 Limit | Upper
 Limit | Measured
 Value | Calibration |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Uncertainty | | | | | |

Reference Generator：

Measure output level from internal generator．

Parameter	Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	＊
Test Tone	dBuV	0.00	0.00	0.00	＊

Distortion：
Generator signal： 127 dBuV（ 2.24 Volt）， $1 \mathbf{k H z}$
Nexus：Sens． 1 V／ms－2（0 dB Gain），HP 10Hz，LP 100 kHz
Basetone is rejected with a notchfilter．
Output of the notch filter is digitized with the HP3458A DMM， and 2．harmonic and 3．harmonic is determined with a DFT．

Parameter	Unit	Upper Limit	Measured Value	Calibration Uncertainty
2．Harmonic	\％	0.0030	0.0031	＊
3．Harmonic	\％	0.0030	0.0008	＊

[^1]
Results of Calibration（continued page）

Channel Type：DELTATRON ZX 2693

Channel No： 3

All measurements made non floating on input and output．
Transducer sensitivity ： 1 V／V．

Calibrated output：

The gain from input to calibrated output，is calculated as measured output level， relative to measured input level．Levels are measured by means of a DMM．

Generator frequency： $1 \mathbf{k H z}$

When applying amplitudes below $31.62 \mathrm{mV}(90 \mathrm{dBuV})$ a 40 dB attenuator is used．
Nexus：HP 10Hz，LP 100 kHz
Output bandwidth limited with external 22.4 kHz LP filter．

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

Lowpass filters：

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage．Levels are measured by means of a DMM．

Input Level： 1 Volt（ 120 dBuV ）

Nexus：Sens． 1 V／ms－2（0 dB Gain）
（LP 100 k results not valid with WH 3219 option）

	Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value Uncertainty

Nexus setting Frequency

LP 0．1k	HP 1	20 Hz
LP 0．1k	HP 1	100 Hz
LP 1 k	HP 10	200 Hz
LP 1 k	HP 10	1000 Hz
LP 3 k	HP 10	600 Hz
LP 3 k	HP 10	3000 Hz
LP 10 k	HP 10	2000 Hz
LP 10 k	HP 10	10000
LP 22．4k	HP 10	4480 Hz
LP 22．4k	HP 10	22400 Hz
LP 30 k	HP 10	6000 Hz
LP 30 k	HP 10	30000 Hz
LP 100 k	HP 10	20000 Hz
LP 100 k	HP 10	60000 Hz
LP 100 k	HP 10	0000

\％	-1.14	1.16	-0.34	0.12
$\%$	-14.89	-6.67	-10.97	0.42
$\%$	-1.14	1.16	-0.37	0.12
$\%$	-14.89	-6.67	-11.67	0.42
$\%$	-1.14	1.16	-0.33	0.12
$\%$	-14.89	-6.67	-10.84	0.42
$\%$	-1.14	1.16	-0.45	0.12
$\%$	-14.89	-6.67	-11.62	0.42
$\%$	-1.14	1.16	-0.47	0.12
$\%$	-14.89	-6.67	-11.08	0.42
$\%$	-1.14	1.16	-0.40	0.12
$\%$	-14.89	-6.67	-10.67	0.42
$\%$	-1.14	1.16	-0.22	0.12
$\%$	-4.50	4.71	1.28	0.47
$\%$	-18.72	-2.28	-12.99	0.62

[^2]
Highpass filters

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage．Levels are measured by means of a DMM．

Input Level： 1 Volt（ 120 dBuV ）

Nexus：Sens． $1 \mathrm{~V} / \mathrm{ms}-2$（0 dB Gain），LP 100 kHz ．

Inherent noise：

The Inherent Noise is measured by connecting a short－circuit plug to the input， and measuring the output level by means of a DMM．

Nexus：Sens．10kV／Pa（80dB Gain），HP 10 Hz ，LP 100 kHz
Input shorted．
Output bandwidth limited with external A filter．

	Unit	Lower Limit	Upper Limit	Measured Valine	Calibration
Uncertainty					

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

Results of Calibration（continued page）

Reference Generator：

Measure output level from internal generator．

Distortion：

Generator signal： 127 dBuV（ 2.24 Volt）， $\mathbf{1} \mathbf{~ k H z}$
Nexus：Sens． 1 V／ms－2（0 dB Gain），HP 10Hz，LP 100 kHz
Basetone is rejected with a notchfilter．
Output of the notch filter is digitized with the HP3458A DMM， and 2．harmonic and 3．harmonic is determined with a DFT．

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

Channel Type：DELTATRON ZX 2693

Channel No： 4

All measurements made non floating on input and output．
Transducer sensitivity ： $1 \mathrm{~V} / \mathrm{V}$ ．

Calibrated output：

The gain from input to calibrated output，is calculated as measured output level， relative to measured input level．Levels are measured by means of a DMM．

Generator frequency： $\mathbf{1 k H z}$

When applying amplitudes below $31.62 \mathrm{mV}(90 \mathrm{dBuV})$ a 40 dB attenuator is used．
Nexus：HP 10Hz，LP 100 kHz
Output bandwidth limited with external 22.4 kHz LP filter．

[^3]校 正 結 果
（續頁）
Results of Calibration（continued page）

Lowpass filters：

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage．Levels are measured by means of a DMM．

Input Level： 1 Volt（ 120 dBuV ）
Nexus：Sens． 1 V／ms－2（0 dB Gain）
（LP 100 k results not valid with WH 3219 option）

		Lower	Upper	Measured Calibration	
Parameter	Unit	Limit	Limit	Value	Uncertainty

[^4]（續頁）

Results of Calibration（continued page）

Highpass filters：

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage．Levels are measured by means of a DMM．

Input Level： 1 Volt（ 120 dBuV ）
Nexus：Sens． 1 V／ms－2（0 dB Gain），LP 100 kHz ．

		Lower	Upper	Measured Calibration	
Parameter	Unit	Limit	Limit	Value	Uncertainty

Nexus setting	Frequency					
HP 0．1	0.1 Hz	$\%$	-14.89	-6.67	-2.21	$*$
HP 0．1	0.5 Hz	$\%$	-1.14	1.16	-1.27	$*$
HP 1	1.0 Hz	$\%$	-14.89	-6.67	-2.43	$*$
HP 1	5.0 Hz	$\%$	-1.14	1.16	-0.59	$*$
HP 10	10.0 Hz	$\%$	-14.89	-6.67	-10.63	0.42
HP 10	50.0 Hz	$\%$	-1.14	1.16	-0.49	0.12

Inherent noise：

The Inherent Noise is measured by connecting a short－circuit plug to the input， and measuring the output level by means of a DMM．

Nexus：Sens．10kV／Pa（80dB Gain），HP 10Hz，LP 100 kHz
Input shorted．
Output bandwidth limited with external A filter．

| | Unit | Lower
 Limit | Upper
 Limit | Measured
 Value | Calibration |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Uncertainty | | | | | |

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

Reference Generator：

Measure output level from internal generator．

Distortion：

Generator signal： $\mathbf{1 2 7} \mathbf{~ d B u V}$（ $\mathbf{2 . 2 4}$ Volt）， $\mathbf{1} \mathbf{~ k H z}$
Nexus：Sens． 1 V／ms－2（0 dB Gain），HP 10Hz，LP 100 kHz
Basetone is rejected with a notchfilter．
Output of the notch filter is digitized with the HP3458A DMM， and 2．harmonic and 3．harmonic is determined with a DFT．

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

說明
\section*{Explanation}

1．根據校正規範的相關技術要求，所有參数的校正結論見校正結果首頁概要．According to the technical requests of the calibration procedure，please check the summary on the first page of the calibration result to get the conclusion of this calibration．

2．以星號（＊）標稱的校正數據再我們申請的認可校正能力範圍之外•為保證校正結果的完整性這部分校正數據也包含在校正證書內。

Results marked by asterisk $\left({ }^{*}\right)$ are outside our scope of accreditation．The measurements are included for completeness．

3．以上校正結果中的不確定度分析的包含概率均為 $95 \% ~(k=2)$ ．
The confidence probability of uncertainty analysis of the calibration result is $95 \%(k=2)$

4．校正參數的不確定度見具體校正結果，参考參數的擴展不確定度見下：

The individual calibration parameter＇s measurement uncertainty please check the detail calibration result，the main parameters＇ uncertainties as below：

注：未经本实验室批准，不得部份复制此校正证书。
Note：This certificate can＇t be partly copied if not approved by the laboratory．

Calibration Certificate

Certificate Number 2021010517

Customer:

Lam Geotechnics Ltd

Model Number	LxT SE
Serial Number	0005062
Test Results	Pass
Initial Condition	Inoperable
Description	Sound Expert LxT Flass 1 Sound Level Meter

Evaluation Method	Tested with: \quad Data reported in dB re $\mathbf{2 0 \mu P a}$.
	PCB 377B02, S/N 173734
	Larson Davis CAL291, S/N 0108
	Larson Davis CAL200, S/N 9079
	Larson Davis PRMLxT1L, S/N 042836
Compliance Standards	Compliant to Manufacturer Specifications and the following standards when combined with
	Calibration Certificate from procedure D0001.8378:

IEC 60651:2001 Type 1 ANSI S1.4-2014 Class 1
IEC 60804:2000 Type $1 \quad$ ANSI S1.4 (R2006) Type 1
IEC 61252:2002
IEC 61260:2001 Class 1
ANSI S1.11 (R2009) Class 1
ANSI S1.25 (R2007)
ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017.
Test points marked with $\mathbf{a} \ddagger$ in the uncertainties column do not fall within this laboratory's scope of accreditation.
The quality system is registered to ISO 9001:2015.
This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma ($k=2$) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT \& SoundExpert Lxt, 1770.01 Rev J Supporting Firmware Version 2.301, 2015-04-30

For $1 / 4^{\prime \prime}$ microphones, the Larson Davis ADP024 $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ adaptor is used with the calibrators and the Larson Davis ADP043 $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ adaptor is used with the preamplifier.
-LARSONDAVIS
A PCB PIEZOTRONICS DIV.

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.
No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.
The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013/ ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

	Standards Used		
Description	Cal Date	Cal Due	Cal Standard
Larson Davis CAL291 Residual Intensity Calibrator	$2020-09-18$	$2021-09-18$	001250
Hart Scientific 2626-H Temperature Probe	$2021-02-04$	$2022-08-04$	006767
Larson Davis CAL200 Acoustic Calibrator	$2021-07-21$	$2022-07-21$	007027
Larson Davis Model 831	$2021-03-02$	$2022-03-02$	007182
PCB 377A13 1/2 inch Prepolarized Pressure Microphone	$2021-03-03$	$2022-03-03$	007185
SRS DS360 Ultra Low Distortion Generator	$2021-04-13$	$2022-04-13$	007635
Larson Davis 1/2" Preamplifier for Model 831 Type 1	$2020-10-06$	$2021-10-06$	PCB0004783

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
1000 Hz	114.00	113.80	114.20	0.14	Pass

Adjusted Level: 114.00
-- End of measurement results-

Loaded Circuit Sensitivity

Measurement	Test Result [dB re $1 \mathrm{~V} / \mathrm{Pa}$]	Lower Limit [dB re $1 \mathrm{~V} / \mathrm{Pa}$]	Upper Limit [dB re $1 \mathrm{~V} / \mathrm{Pa}$]	Expanded Uncertainty [dB]	Result
1000 Hz	-27.69	-29.61	-26.24	0.14	Pass

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI
S1.4-2014 Part 1: 5.5

| Frequency [Hz] | Test Result [dB] | Expected [dB] | Lower Limit [dB] | Upper Limit [dB] | Expanded
 Uncertainty [dB] | Result |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 125 | -0.20 | -0.20 | -1.20 | 0.80 | 0.23 | Pass |
| 1000 | 0.13 | 0.00 | -0.70 | 0.70 | 0.23 | Pass |
| 8000 | -2.49 | -3.00 | -5.50 | -1.50 | 0.32 | Pass |
| | | - End of measurement results-- | | | | |
| | | | | | | |

LARSON DAVIS - A PCB PIEZOTRONICS DIV.
1681 West 820 North
Provo, UT 84601, United States
716-684-0001

Self-generated Noise

Measured according to IEC 61672-3:2013 11.1 and ANSI S1.4-2014 Part 3: 11.1
Measurement Test Result [dB]

A-weighted

- End of measurement results-

Certificate Number 2021010409
Customer:
Lam Geotechnics Ltd

Model Number	LxT SE
Serial Number	0005062
Test Results	Pass
Initial Condition	Inoperable
Description	Sound Expert LxT Firmware Revision: 2.404

Procedure Number	D0001.8378		
Technician	Ron Harris		
Callbration Date	24 Aug 2021		
Calibration Due			
Temperature	23.69	${ }^{\circ} \mathrm{C}$	$\pm 0.25^{\circ} \mathrm{C}$
Humidity	52.8	\%RH	± 2.0 \%RH
Static Pressure	86.15		$\pm 0.13 \mathrm{kPa}$

Evaluation Method	Tested electrically using Larson Davis PRMLxT1L S/N 042836 and a 12.0 pF capacitor to simulate microphone capacitance. Data reported in dB re $20 \mu \mathrm{~Pa}$ assuming a microphone sensitivity of $23.6 \mathrm{mV} / \mathrm{Pa}$.
Compliance Standards	Compliant to Manufacturer Specifications and the following standards when combined with Calibration Certificate from procedure D0001.8384:

IEC 60651:2001 Type 1	ANSI S1.4-2014 Class 1
IEC 60804:2000 Type 1	ANSI S1.4 (R2006) Type 1
IEC 61252:2002	ANSI S1.25 (R2007)
IEC 61672:2013 Class 1	ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. Test points marked with a \ddagger in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.
This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma ($\mathbf{k}=2$) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT \& SoundExpert Lxt, 1770.01 Rev O Supporting Firmware Version 4.0.5, 2019-09-10

Calibration Check Frequency: 1000 Hz ; Reference Sound Pressure Level: 114 dB re $20 \mu \mathrm{~Pa}$

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.
No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.
The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3,

CARSONDAVIS
A PCB PIEZOTRONICS DIV.
for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

	Standards Used		
Description	Cal Date	Cal Due	Cal Standard
Hart Scientific 2626-H Temperature Probe	$2021-02-04$	$2022-08-04$	006767
SRS DS360 Ultra Low Distortion Generator	$2021-01-05$	$2022-01-05$	007118

LARSONDAVIS
A PCB PIEZOTRONICS DIV.

A-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
10.00	-70.36	0.04	-inf	3.00	0.25	Pass
12.59	-63.40	0.00	-inf	2.50	0.25	Pass
15.85	-56.70	0.00	-4.00	2.00	0.25	Pass
19.95	-50.41	0.09	-2.00	2.00	0.25	Pass
25.12	-44.68	0.02	-1.50	2.00	0.25	Pass
31.62	-39.40	0.00	-1.50	1.50	0.25	Pass
39.81	-34.61	-0.01	-1.00	1.00	0.25	Pass
50.12	-30.27	-0.07	-1.00	1.00	0.25	Pass
63.10	-26.20	0.00	-1.00	1.00	0.25	Pass
79.43	-22.47	0.03	-1.00	1.00	0.25	Pass
100.00	-19.15	-0.05	-1.00	1.00	0.25	Pass
125.89	-16.15	-0.05	-1.00	1.00	0.25	Pass
158.49	-13.32	0.08	-1.00	1.00	0.25	Pass
199.53	-10.86	0.04	-1.00	1.00	0.25	Pass
251.19	-8.59	0.01	-1.00	1.00	0.25	Pass
316.23	-6.48	0.12	-1.00	1.00	0.25	Pass
398.11	-4.91	-0.11	-1.00	1.00	0.25	Pass
501.19	-3.34	-0.14	-1.00	1.00	0.25	Pass
630.96	-2.06	-0.16	-1.00	1.00	0.25	Pass
794.33	-0.95	-0.15	-1.00	1.00	0.25	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.25	Pass
1,258.93	0.94	0.34	-1.00	1.00	0.25	Pass
1,584.89	1.01	0.01	-1.00	1.00	0.25	Pass
1,995.26	0.95	-0.25	-1.00	1.00	0.25	Pass
2,511.89	1.21	-0.09	-1.00	1.00	0.25	Pass
3,162.28	1.17	-0.03	-1.00	1.00	0.25	Pass
3,981.07	0.78	-0.22	-1.00	1.00	0.25	Pass
5,011.87	0.50	0.00	-1.50	1.50	0.25	Pass
6,309.57	-0.50	-0.40	-2.00	1.50	0.25	Pass
7,943.28	-1.22	-0.12	-2.50	1.50	0.25	Pass
10,000.00	-2.43	0.07	-3.00	2.00	0.25	Pass
12,589.25	-4.35	-0.05	-5.00	2.00	0.25	Pass
15,848.93	-6.84	-0.24	-16.00	2.50	0.25	Pass
19,952.62	-10.13	-0.83	-inf	3.00	0.25	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV.

Page 3 of 13
D0001.8407 Rev E

C-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	$\begin{array}{r} \text { Expanded } \\ \text { Uncertainty }[\mathrm{dB}] \end{array}$	Result
10.00	-14.50	-0.20	-inf	3.00	0.25	Pass
12.59	-11.35	-0.15	-inf	2.50	0.25	Pass
15.85	-8.57	-0.06	-4.00	2.00	0.25	Pass
19.95	-6.20	0.00	-2.00	2.00	0.25	Pass
25.12	-4.38	0.02	-1.50	2.00	0.25	Pass
31.62	-2.98	0.02	-1.50	1.50	0.25	Pass
39.81	-1.99	0.01	-1.00	1.00	0.25	Pass
50.12	-1.31	-0.01	-1.00	1.00	0.25	Pass
63.10	-0.82	-0.02	-1.00	1.00	0.25	Pass
79.43	-0.47	0.03	-1.00	1.00	0.25	Pass
100.00	-0.32	-0.02	-1.00	1.00	0.25	Pass
125.89	-0.22	-0.02	-1.00	1.00	0.25	Pass
158.49	-0.05	0.05	-1.00	1.00	0.25	Pass
199.53	-0.02	-0.02	-1.00	1.00	0.25	Pass
251.19	0.04	0.03	-1.00	1.00	0.25	Pass
316.23	0.15	0.15	-1.00	1.00	0.25	Pass
398.11	-0.07	-0.07	-1.00	1.00	0.25	Pass
501.19	-0.09	-0.09	-1.00	1.00	0.25	Pass
630.96	-0.13	-0.13	-1.00	1.00	0.25	Pass
794.33	-0.11	-0.11	-1.00	1.00	0.25	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.25	Pass
1,258.93	0.32	0.32	-1.00	1.00	0.25	Pass
$1,584.89$	-0.06	0.04	-1.00	1.00	0.25	Pass
1,995.26	-0.42	-0.22	-1.00	1.00	0.25	Pass
2,511.89	-0.36	-0.06	-1.00	1.00	0.25	Pass
3,162.28	-0.53	-0.03	-1.00	1.00	0.25	Pass
3,981.07	-1.00	-0.20	-1.00	1.00	0.25	Pass
$5,011.87$	-1.34	-0.04	-1.50	1.50	0.25	Pass
6,309.57	-2.37	-0.37	-2.00	1.50	0.25	Pass
7,943.28	-3.12	-0.12	-2.50	1.50	0.25	Pass
10,000.00	-4.34	0.06	-3.00	2.00	0.25	Pass
12,589.25	-6.27	-0.07	-5.00	2.00	0.25	Pass
15,848.93	-8.77	-0.27	-16.00	2.50	0.25	Pass
19,952.62	-12.06	-0.85	-inf	3.00	0.25	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV.
1681 West 820 North
Provo, UT 84601, United States
716-684-0001
2021-8-24T16:58:14
Page 4 of 13

Z-weight Filter Response

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	$\begin{array}{r} \text { Expanded } \\ \text { Uncertainty }[\mathrm{dB}] \end{array}$	Result
10.00	-0.29	-0.29	-inf	3.00	0.25	Pass
12.59	-0.20	-0.20	-inf	2.50	0.25	Pass
15.85	-0.12	-0.12	-4.00	2.00	0.25	Pass
19.95	-0.03	-0.03	-2.00	2.00	0.25	Pass
25.12	-0.03	-0.03	-1.50	2.00	0.25	Pass
31.62	-0.01	-0.01	-1.50	1.50	0.25	Pass
39.81	-0.01	-0.01	-1.00	1.00	0.25	Pass
50.12	-0.06	-0.06	-1.00	1.00	0.25	Pass
63.10	-0.02	-0.02	-1.00	1.00	0.25	Pass
79.43	0.03	0.03	-1.00	1.00	0.25	Pass
100.00	0.00	0.00	-1.00	1.00	0.25	Pass
125.89	-0.05	-0.05	-1.00	1.00	0.25	Pass
158.49	0.03	0.03	-1.00	1.00	0.25	Pass
199.53	0.02	0.01	-1.00	1.00	0.25	Pass
251.19	0.02	0.02	-1.00	1.00	0.25	Pass
316.23	0.14	0.14	-1.00	1.00	0.25	Pass
398.11	-0.10	-0.10	-1.00	1.00	0.25	Pass
501.19	-0.11	-0.11	-1.00	1.00	0.25	Pass
630.96	-0.16	-0.16	-1.00	1.00	0.25	Pass
794.33	-0.12	-0.12	-1.00	1.00	0.25	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.25	Pass
1,258.93	0.35	0.35	-1.00	1.00	0.25	Pass
1,584.89	0.03	0.03	-1.00	1.00	0.25	Pass
1,995.26	-0.25	-0.25	-1.00	1.00	0.25	Pass
2,511.89	-0.06	-0.06	-1.00	1.00	0.25	Pass
3,162.28	-0.04	-0.04	-1.00	1.00	0.25	Pass
3,981.07	-0.20	-0.20	-1.00	1.00	0.25	Pass
5,011.87	-0.06	-0.06	-1.50	1.50	0.25	Pass
$6,309.57$	-0.37	-0.37	-2.00	1.50	0.25	Pass
7,943.28	-0.07	-0.07	-2.50	1.50	0.25	Pass
10,000.00	0.13	0.13	-3.00	2.00	0.25	Pass
12,589.25	-0.02	-0.02	-5.00	2.00	0.25	Pass
15,848.93	-0.37	-0.37	-16.00	2.50	0.25	Pass
19,952.62	-0.72	-0.72	-inf	3.00	0.25	Pass

Provo, UT 84601, United States
716-684-0001
-LARSONDAVIS
A PCB PIEZOTRONICS DIV.
Page 5 of 13

High Level Stability

Electrical signal test of high level stability performed according to IEC 61672-3:2013 21 and ANSI S1.4-2014 Part 3: 21 for compliance to IEC 61672-1:2013 5.15 and ANSI S1.4-2014 Part 1: 5.15

| Measurement | Test Result [dB] | Lower limit [dB] | Upper limit [dB] | Expanded
 Uncertainty [dB] | Result |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| High Level Stability | 0.00 | -0.10 | 0.10 | $0.01 \ddagger$ | Pass |
| | | - End of measurement results-- | | | |

Long-Term Stability

Electrical signal test of long term stability performed according to IEC 61672-3:2013 15 and ANSI S1.4-2014 Part 3: 15 for compliance to ISC 61672-1:2013 5.14 and ANSI S1.4-2014 Part 1: 5.14

| Test Duration [min] | Test Result $[\mathrm{dB}]$ | Lower limit $[\mathrm{dB}]$ | Upper limit [dB] | Expanded
 Uncertainty $[\mathrm{dB}]$ | Result |
| :---: | :---: | :---: | ---: | ---: | ---: | ---: |
| 35 | 0.00 | -0.10 | 0.10 | $0.07 \ddagger$ | Pass |

1 kHz Reference Levels

Frequency weightings and time weightings at 1 kHz (reference is A weighted Fast) performed according to IEC 61672-3:2013 14 and ANSI S1.4-2014 Part 3: 14 for compliance to IEC 61672-1:2013 5.5.9 and 5.8.3 and ANSI S1.4-2014 Part 1: 5.5.9 and 5.8.3

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
C weight	95.87	95.67	96.07	0.15	Pass
Z weight	95.86	95.67	96.07	0.15	Pass
Slow	95.87	95.77	95.97	0.15	Pass
Impulse	95.87	95.77	95.97	0.15	Pass

A-weighted Broadband Log Linearity: $8,000.00 \mathrm{~Hz}$

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
29.00	0.06	-0.70	0.70	0.16	Pass
30.00	0.05	-0.70	0.70	0.35	Pass
31.00	0.03	-0.70	0.70	0.16	Pass
32.00	0.02	-0.70	0.70	0.16	Pass
33.00	0.01	-0.70	0.70	0.16	Pass
34.00	0.00	-0.70	0.70	0.16	Pass
39.00	-0.01	-0.70	0.70	0.16	Pass
44.00	-0.03	-0.70	0.70	0.16	Pass
49.00	-0.02	-0.70	0.70	0.16	Pass
54.00	-0.02	-0.70	0.70	0.16	Pass
59.00	-0.02	-0.70	0.70	0.16	Pass
64.00	-0.02	-0.70	0.70	0.16	Pass
69.00	-0.02	-0.70	0.70	0.16	Pass
74.00	-0.02	-0.70	0.70	0.16	Pass
79.00	-0.03	-0.70	0.70	0.16	Pass
84.00	0.04	-0.70	0.70	0.16	Pass
89.00	0.04	-0.70	0.70	0.16	Pass
94.00	0.02	-0.70	0.70	0.16	Pass
99.00	0.03	-0.70	0.70	0.16	Pass
104.00	0.01	-0.70	0.70	0.15	Pass
109.00	0.01	-0.70	0.70	0.15	Pass
115.00	0.01	-0.70	0.70 0.70	0.15	Pass
116.00	0.01	-0.70	0.70	0.15	Pass
117.00	0.01	-0.70	0.70	0.15	Pass
118.00	0.00	-0.70	0.70	0.15	Pass
119.00	0.01	-0.70	0.70	0.15	Pass
120.00	-0.02	-0.70	0.70	0.15	Pass

Slow Detector

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Amplitude [dB]	Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
113.15	200	-7.54	-7.92	-6.92	0.15	Pass
	2	-27.17	-29.99	-25.99	0.15	Pass
	- End of measurement results--					
Fast Detector						

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Amplitude [dB]	Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
113.15	200.00	-1.06	-1.48	-0.48	0.26	Pass
	2.00	-18.16	-19.49	-16.99	0.15	Pass
	0.25	-27.47	-29.99	-25.99	0.15	Pass

Sound Exposure Level

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Amplitude [dB]	Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
113.15	200.00	-7.01	-7.49	-6.49	0.15	Pass
	2.00	-27.03	-28.49	-25.99	0.15	Pass
	0.25	-36.14	-39.02	-35.02	0.15	Pass

-- End of measurement results--

Peak C-weight

C-weighted peak sound level performed according to IEC 61672-3:2013 19 and ANSI S1.4-2014 Part 3: 19 for compliance to IEC 61672-1:2013 5.13 and ANSI S1.4-2014 Part 1:5.13

Level [dB]	Frequency [Hz]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
111.15	31.50	114.39	111.65	115.65	0.15	Pass
111.15	500.00	114.74	113.65	115.65	0.15	Pass
111.15	$8,000.00$	113.93	112.55	116.55	0.15	Pass
111.15, Negative	500.00	113.33	112.55	114.55	0.15	Pass
111.15, Positive	500.00	113.29	112.55	114.55	0.15	Pass
		-- End of measurement results--				

Peak Z-weight

Z-weighted peak sound level performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB]	Duration[$\mu \mathbf{s}]$		Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result

Overload indication performed according to IEC 61672-3:2013 20 and ANSI S1.4-2014 Part 3: 20 for compliance to IEC 61672-1:2013 5.11, IEC 60804:2000 9.3.5, IEC 61252:2002 11, ANSI S1.4 (R2006) 5.8, and ANSI S1.4-2014 Part 1: 5.11, ANSI S1.25 (R2007) 7.6, ANSI S1.43 (R2007) 7

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result

Peak Rise Time
Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB]	Duration [$\mu \mathrm{s}$]		Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
116.15	40	Negative Pulse	117.51	116.06	118.06	0.15	Pass
		Positive Pulse	117.42	116.01	118.01	0.15	Pass
	30	Negative Pulse	116.60	116.06	118.06	0.15	Pass
		Positive Pulse	116.56	116.01	118.01	0.15	Pass

[^5]LARSONDAVIS
A PCB PIEZOTRONICS DIV.

Positive Pulse Crest Factor

$200 \boldsymbol{\mu}$ s pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit
Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
114.15	3	OVLD	± 0.50	$0.15 \ddagger$	Pass
	5	OVLD	± 1.00	$0.15 \ddagger$	Pass
	10	OVLD	± 1.50	$0.15 \ddagger$	Pass
104.15	3	-0.15	± 0.50	$0.15 \ddagger$	Pass
	5	-0.16	± 1.00	$0.16 \ddagger$	Pass
	10	OVLD	± 1.50	$0.15 \ddagger$	Pass
94.15	3	-0.12	± 0.50	$0.15 \ddagger$	Pass
	5	-0.11	± 1.00	$0.15 \ddagger$	Pass
	10	-0.18	± 1.50	$0.15 \ddagger$	Pass
84.15	3	-0.13	± 0.50	$0.15 \ddagger$	Pass
	5	-0.14	± 1.00	$0.15 \ddagger$	Pass
	10	-0.08	± 1.50	$0.15 \ddagger$	Pass
		- End of measurement results--			

Negative Pulse Crest Factor

$\mathbf{2 0 0} \boldsymbol{\mu s}$ pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Tone Burst

$\mathbf{2 k H z}$ tone burst tests at $\mathbf{2 . 0}, \mathbf{1 2 . 0}, \mathbf{2 2 . 0}, \mathbf{3 2 . 0} \mathrm{dB}$ below Overload Limit
Tone burst response measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
114.15	3	OVLD	± 0.50	0.15	Pass
	5	OVLD	± 1.00	0.15	Pass
104.15	3	-0.06	± 0.50	0.15	Pass
	5	-0.01	± 1.00	0.15	Pass
94.15	3	-0.05	± 0.50	0.15	Pass
	5	-0.05	± 1.00	0.15	Pass
84.15	3	-0.06	± 0.50	0.15	Pass
	5	0.00	± 1.00	0.15	Pass

[^6]

Page 10 of 13

Impulse Detector measured according to IEC 60651:2001 9.4.3 and ANSI S1.4:1983 (R2006) 8.4.3

Amplitude [dB]	Repitition Rate [Hz]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
116.15	100.00	-2.84	-3.71	-1.71	0.15	Pass
	20.00	-7.63	-9.57	-5.57	0.20	Pass
	2.00	-8.89	-10.76	-6.76	0.15	Pass
	2.00	4.93	4.00	6.00	0.15	Pass
-- End of measurement results--						
Impulse Detector - Single						

Impulse Detector measured according to IEC 60651:2001 9.4.3 and ANSI S1.4:1983 (R2006) 8.4.3

Amplitude [dB]	Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
116.15	20.00	-3.74	-5.11	-2.11	0.15	Pass
	5.00	-8.82	-10.76	-6.76	0.16	Pass
	2.00	-12.56	-14.55	-10.55	0.16	Pass
Step	2.00	10.00	9.00	11.00	0.16	Pass
		- End of measurement results--				

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
O dB Gain	84.02	83.90	84.10	0.15	Pass
O dB Gain, Linearity	21.19	20.30	21.70	0.16	Pass
OBA Low Range	84.00	83.90	84.10	0.15	Pass
OBA Normal Range	84.00	83.20	84.80	0.15	Pass
	- End of measurement results--				

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

Measurement	Test Result [dB]	Upper limit [dB]	Result
A-weight Noise Floor	7.36	16.00	Pass
C-weight Noise Floor	11.61	25.00	Pass
Z-weight Noise Floor	19.23		Pass

Total Harmonic Distortion

Measured using $1 / 3$-Octave filters

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
10 Hz Signal	113.22	112.35	113.95	0.15	Pass
THD	-56.95		-50.00	$0.01 \ddagger$	Pass
THD+N	-55.37		-50.00	$0.01 \ddagger$	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV.
LARSONDAVIS

1/3-Octave Self-Generated Noise

The SLM is set to low range.

Frequency [Hz]	Test Result [dB]	Upper limit [dB]	Result
6.30	8.37	16.30	Pass
8.00	7.46	15.20	Pass
10.00	7.28	14.20	Pass
12.50	6.10	13.20	Pass
16.00	5.60	12.10	Pass
20.00	4.57	11.10	Pass
25.00	3.50	10.40	Pass
31.50	2.56	9.40	Pass
40.00	1.95	8.60	Pass
50.00	0.52	7.40	Pass
63.00	0.22	6.10	Pass
80.00	-0.75	5.00	Pass
100.00	-1.88	4.20	Pass
125.00	-1.96	3.30	Pass
160.00	-2.84	2.40	Pass
200.00	-3.54	1.90	Pass
250.00	-4.43	1.20	Pass
315.00	-4.87	0.60	Pass
400.00	-5.22	0.20	Pass
500.00	-5.72	-0.10	Pass
630.00	-6.09	-0.50	Pass
800.00	-6.10	-0.50	Pass
1,000.00	-6.29	-0.60	Pass
1,250.00	-6.22	-0.60	Pass
1,600.00	-6.16	-0.20	Pass
2,000.00	-5.87	0.20	Pass
2,500.00	-5.56	0.70	Pass
3,150.00	-5.09	1.40	Pass
4,000.00	-4.58	2.10	Pass
5,000.00	-4.02	2.80	Pass
$6,300.00$	-3.35	3.70	Pass
8,000.00	-2.61	4.60	Pass
10,000.00	-1.86	5.50	Pass
12,500.00	-1.06	6.40	Pass
16,000.00	-0.23	7.40	Pass
20,000.00	0.64	8.30	Pass

LARSONDAVIS
\qquad

A PCB PIEZOTRONICS DIV.

HRKLLAS 028

CERTIFICATE OF CALIBRATION

Test specifications

1，The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 609421997 Annex B and the lab calibration procedure SMTP004－CA－156．
2，The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique．
3，The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker＇s information indicates that the instrument is insensitive to pressure changes．

Test results

Details of the performed measurements are presented on page 2 of this certificate．

Date：21－Nov－2020

Comments：The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long－term stability of the instrument．The results apply to the item as received．

CERTIFICATE OF CALIBRATION
（Continuation Page）

Certificate No．：

20CA1119 02－01
Page： 2 of 2

1，Measured Sound Pressure Level
The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique．The results are given in below with the estimated uncertainties．
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Frequency } \\ \text { Shown } \\ \mathrm{Hz}\end{array} & \begin{array}{c}\text { Output Sound Pressure } \\ \text { Level Setting } \\ \mathrm{dB}\end{array} & \begin{array}{c}\text { Measured Output } \\ \text { Sound Pressure Level } \\ \mathrm{dB}\end{array} & \begin{array}{c}\text {（Output level in dB re } 20 \mu \mathrm{~Pa} \text { ）}\end{array} \\ \hline 1000 & 94.00 & 93.66 \\ \text { Uncertainty } \\ \mathrm{dB}\end{array}\right]$

2，Sound Pressure Level Stability－Short Term Fluctuations
The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B\＆K 2610 measuring amplifier over a 20 second time interval as required in the standard．The Short Term Fluctuation was found to be：

At 1000 Hz
Estimated expanded uncertainty

$$
\begin{aligned}
\mathrm{STF}= & 0.013 \mathrm{~dB} \\
& 0.005 \mathrm{~dB}
\end{aligned}
$$

3，Actual Output Frequency

The determination of actual output frequency was made using a B\＆K 4180 microphone together with a B\＆K 2673 preamplifier connected to a B\＆K 2610 measuring amplifier．The AC output of the B\＆K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard．The actual output frequency at 1 KHz was：

At 1000 Hz

$$
\text { Actual Frequency }=1000.1 \mathrm{~Hz}
$$

Estimated expanded uncertainty $\quad 0.1 \mathrm{~Hz} \quad$ Coverage factor $\mathrm{k}=2.2$

4，Total Noise and Distortion
For the Total Noise and Distortion measurement，the unfiltered AC output of the B\＆K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser．The TND result at 1 KHz was：

At 1000 Hz

Estimated expanded uncertainty

$$
\text { TND }=0.5 \%
$$

0.7%

The expanded uncertainties have been calculated in accordance with the ISO Publication＂Guide to the expression of uncertainty in measurement＂，and gives an interval estimated to have a level of confidence of 95% ．A coverage factor of 2 is assumed unless explicitly stated．

Calibrated by：
 －End

Checked by：

The standard（s）and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule te maintain the required accuracy level．

[^0]: HKAS has accredited this laboratory（Reg．No．HOKLAS 028）under HOKLAS for specific calibration activities as listed in the HOKLAS directory of accredited laboratories．The results shown in this certificate are traceable to the International System of Units（SI）or recognised measurement standards．The results relate only to the item（s）calibrated．This certificate shall not be reproduced except in full without approval of the laboratory．

[^1]: 注：未经本实验室批准，不得部份复制此校正证书。
 Note：This certificate can＇t be partly copied if not approved by the laboratory．

[^2]: 注：未经本实验室批准，不得部份复制此校正证书。
 Note：This certificate can＇t be partly copied if not approved by the laboratory

[^3]: 注：未经本实验室批准，不得部份复制此校正证书。
 Note：This certificate can＇t be partly copied if not approved by the laboratory．

[^4]: 注：未经本实验室批准，不得部份复制此校正证书。
 Note：This certificate can＇t be partly copied if not approved by the laboratory．

[^5]: LARSON DAVIS - A PCB PIEZOTRONICS DIV.

[^6]: LARSON DAVIS - A PCB PIEZOTRONICS DIV.

