

RECALIBRATION DUE DATE:

August 3, 2022

Certificate of Calibration

Calibration Certification Information

Cal. Date: August 3, 2021

Rootsmeter S/N: 438320

Ta: 295 Pa: 750.3 °K

Operator: Jim Tisch
Calibration Model #:

1 113011

TE-5025A

Calibrator S/N: 3166

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.3610	3.2	2.00
2	3	4	1	0.9540	6.4	4.00
3	5	6	1	0.8460	7.9	5.00
4	7	8	1	0.8070	8.7	5.50
5	9	10	1	0.6630	12.7	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
0.9930	0.7296	1.4123	0.9957	0.7316	0.8868				
0.9888	1.0365	1.9973	0.9915	1.0393	1.2541				
0.9868	1.1664	2.2330	0.9895	1.1696	1.4021				
0.9857	1.2215	2.3420	0.9884	1.2248	1.4705				
0.9804	1.4788	2.8246	0.9831	1.4828	1.7735				
	m=	1.88375		m=	1.17957				
QSTD[b=	0.03970	QA [b=	0.02493				
	r=	0.99998		r=	0.99998				

	Calculation	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	or manometer reading (in H2O)
ΔP: rootsme	ter manometer reading (mm Hg)
Ta: actual ab	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002 www.tisch-env.com

TOLL FREE: (877)263-7610 FAX: (513)467-9009

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

				•	• `	•	•	
Location :		CMA2a			Calbration	Date	: (06-Jul-21
Equipment no.	ı	HVS002			Calbration	Due Date	: 0	6-Sep-21
CALIBRATION OF CON	ITINUOUS	S FLOW R	ECORDER					
				Ambient Condition				
Temperature, T _a		302	2	Kelvin Pressure, P	a	1	006	mmHg
			Orifice Tr	ansfer Standard Infor	mation			
Equipment No.		3166		Slope, m _c 2.088	77 Ir	ntercept, bc		-0.02270
Last Calibration Date		17-Jul-2	0	(Hx	P _a / 1013	.3 x 298 /	$T_a)^{1/2}$	
Next Calibration Date		17-Jul-2	1	=				
				Calibration of TSP				
Calibration	Mar	nometer R	eading	Q _{std}	Continuo	us Flow		IC
Point	H (i	inches of	water)	(m ³ / min.)	Record	er, W	(W(P _a /1013.	3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-axis	(CFI	M)	١	⁄-axis
1	4.1	4.1	8.2	1.3678	55	j	5-	4.4374
2	3.3	3.3	6.6	1.2282	50	١	49	9.4885
3	2.6	2.6	5.2	1.0914	45	i	4	4.5397
4	2.2	2.2	4.4	1.0048	38	1	3	7.6113
5	1.5	1.5	3.0	0.8316	30)	29	9.6931
By Linear Regression of	Y on X							
	Slope, m	=	47.0	579 Int	ercept, b =	-8.	8342	
Correlation Co	oefficient*	=	0.99	913 				
Calibration	Accepted	=	Yes/P	\0 **				
* if Correlation Coefficier	nt < 0.990,	check and	I recalibration	again.				
** Doloto oo opproprieto								
** Delete as appropriate.								
Remarks :								
Calibrated by		Sam Lam			Checked b	у		ames Chu
Date :	C)6-Jul-21			Date		: (06-Jul-21

Lam Environmental Services Limited

Calibration Data for High Volume Sampler (TSP Sampler)

Location :		CMA2a				Calbratio	on Date	:	01-Sep-21
Equipment no.	ı	HVS002				Calbratio	on Due Date	:	01-Nov-21
CALIBRATION OF CON	ITINUOUS	FLOW R	ECORDER						
				Ambient (Condition				
Temperature, T _a		301.	7	Kelvin	Pressure, P	a	1	010	mmHg
			Orifice Tr	ansfer Sta	andard Inforr	mation			
Equipment No.		3880		Slope, m _c	2.0843	37	Intercept, bc		-0.01508
Last Calibration Date		03-Feb-2	21		(Hx	P _a / 101	3.3 x 298 /	$T_a)^{1/2}$,
Next Calibration Date		03-Feb-2	22		=	$m_c x$	$Q_{std} + b_c$		
				Calibratio	n of TSP				
Calibration	Mar	nometer R	eading	C	Q _{std}	Continu	ious Flow		IC
Point	Н (inches of	water)	(m ³	/ min.)	Reco	rder, W	(W(P _a /10	13.3x298/T _a) ^{1/2} /35.31)
	(up)	(down)	(difference)	X-	axis	(C	FM)		Y-axis
1	1.3	1.3	2.6	0.	7748		29		28.7732
2	1.8	1.8	3.6	0.	9104		35		34.7263
3	2.7	2.7	5.4	1.	1134	,	48		47.6247
4	3.7	3.7	7.4	1.3	3021		52		51.5934
5	4.7	4.7	9.4	1.	4667		63		62.5074
By Linear Regression of	Y on X								
	Slope, m	=	47.4	554	Inte	ercept, b =	-7.	7950	
Correlation Co	oefficient*	=	0.99	07					
Calibration	Accepted	=	Yes/P	\0 **					
* if Correlation Coefficien	nt < 0.990,	check and	I recalibration	again.					
** Delete as appropriate.									
Delete as appropriate.									
Remarks :									
		2				01- 1-	L		Jamas Cl
Calibrated by		Garry Yu				Checked	БУ	:	James Chu
Date :	0	1-Sep-21				Date		:	01-Sep-21

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

20CA1119 02-02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1) Larson Davis Microphone

Manufacturer: Type/Model No.:

831

-

Serial/Equipment No.: Adaptors used:

0004627

, -

Item submitted by

Customer Name:

Lam Environmental Services Limited.

Address of Customer:

-

Request No.: Date of receipt:

19-Nov-2020

Date of test:

20-Nov-2020

Reference equipment used in the calibration

Description:

Model:

Serial No.

Expiry Date:

Traceable to:

Multi function sound calibrator

B&K 4226

2288444

23-Aug-2021

CIGISMEC

Signal generator

DS 360

61227

24-Dec-2020

CEPREI

Ambient conditions

Temperature:

22 ± 1 °C 55 ± 10 %

Relative humidity: Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date: 21-Nov-2020

Company Chop:

SENGINEERING COMPANY OF THE SENGING COMPANY

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA1119 02-02

Page

of

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
Self-generated noise	Α	Pass	0.3	
	С	Pass	0.8	2.1
	Lin	Pass	1.6	2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

			Expanded	Coverage	
Test:	Subtest	Status	Uncertanity (dB)	Factor	
Acoustic response	Weighting A at 125 Hz	Pass	0.3		
	Weighting A at 8000 Hz	Pass	0.5		

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Fung Chi Yip

Checked by:

Feng J

Date:

20-Nov-2020

Date:

21-Nov-2020

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

End

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

合 試 驗 有 限 公 司

SMECLab

葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 1 of 5

Sound level meter type:

831

Serial No.

0004627

Date

20-Nov-2020

Microphone

type:

Serial No.

Report: 20CA1119 02-02

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting

16.4

dB

Noise level in C weighting

18.5

dB

Noise level in Lin

26.2

dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	ıl level	Tolerance	Deviation	
Reference/Expected level	non-integrated	integrated		non-integrated	integrated
dB	dB	dB	+/- dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
124.0	124.0	124.0	0.7	0.0	0.0
129.0	129.0	129.0	0.7	0.0	0.0
134.0	134.0	134.0	0.7	0.0	0.0
135.0	135.0	135.0	0.7	0.0	0.0
136.0	136.0	136.0	0.7	0.0	0.0
137.0	137.0	137.0	0.7	0.0	0.0
138.0	138.0	138.0	0.7	0.0	0.0
139.0	139.0	139.0	0.7	0.0	0.0
140.0	140.0	140.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	74.0	74.0	0.7	0.0	0.0
69.0	69.0	69.0	0.7	0.0	0.0
64.0	64.0	64.0	0.7	0.0	0.0
59.0	59.0	59.0	0.7	0.0	0.0
54.0	54.0	54.0	0.7	0.0	0.0
49.0	49.0	49.0	0.7	0.0	0.0
44.0	44.0	44.0	0.7	0.0	0.0
39.0	39.0	39.0	0.7	0.0	0.0

(c)Soils Materials Eng. Co., Ltd.

SMECLab

香港新界藝涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 2 of 5

Sound level meter type: Microphone type:	831		Serial No. Serial No.	0004627 -	Dat	e 20-Nov	-2020
					Rep	ort: 20CA11	19 02-02
34.0	34.0	34.0	0.7		0.0	0.0	
33.0	33.0	33.0	0.7		0.0	0.0	
32.0	32.1	32.1	0.7		0.1	0.1	
31.0	31.1	31.1	0.7		0.1	0.1	
30.0	30.1	30.1	0.7		0.1	0.1	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	30.0	30.1	0.7	0.1
20-140	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Frequency weighting A:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	54.6	1.5	1.5	0.0
63.1	94.0	67.8	67.8	1.5	1.5	0.0
125.9	94.0	77.9	77.9	1.0	1.0	0.0
251.2	94.0	85.4	85.4	1.0	1.0	0.0
501.2	94.0	90.8	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	95.0	1.0	1.0	0.0
7943.0	94.0	92.9	92.9	1.5	3.0	0.0
12590.0	94.0	89.7	89.7	3.0	6.0	0.0

Frequency weighting C:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	91.0	1.5	1.5	0.0
63.1	94.0	93.2	93.2	1.5	1.5	0.0
125.9	94.0	93.8	93.8	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	93.8	93.9	1.0	1.0	0.1

(c)Soils Materials Eng. Co., Ltd.

SMECLab

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 3 of 5

Sound level me	eter type:	831		Serial No.	000	4627	Date	20-Nov-2020
Microphone	type:	-		Serial No.	-			
							Report	: 20CA1119 02-02
3981.0	94.0)	93.2	93.2	1.0	1.0	0.0	
7943.0	94.0)	91.0	91.0	1.5	3.0	0.0	
12590.0	94.0)	87.8	87.8	3.0	6.0	0.0	

Frequency weighting Lin:

Frequency	Ref. level	Expected level	Actual level	Tolerar	nce(dB)	Deviation
Hz	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	94.0	1.5	1.5	0.0
63.1	94.0	94.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	94.0	1.0	1.0	0.0
7943.0	94.0	94.0	94.1	1.5	3.0	0.1
12590.0	94.0	94.0	94.0	3.0	6.0	0.0

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
136.0	135.0	134.9	1.0	1.0	-0.1

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolerance(dB)		Deviation
dB	dB	dB	+	-	dB
136.0	131.9	131.8	1.0	1.0	-0.1

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range.

Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
139.0	139.0	139.6	2.0	0.6

Negative polarities:

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

831

Serial No.

0004627

Date

20-Nov-2020

Microphone

type:

Serial No.

Report: 20CA1119 02-02

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
139.0	139.0	139.6	2.0	0.6

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

(Set to INT)

	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	138.0 + 6.6	138.0	138.0	0.5	0.0

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
140.0	131.2	131.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated burst indication		Tolerance	Deviation
dB	Expected (dB) Actual (dB)		+/- dB	dB
140.0	137.3	137.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

Duration of tone barst.	1 1113					
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ.

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Leg:

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

831

Serial No.

0004627

Date

20-Nov-2020

Microphone

type:

Serial No.

Report: 20CA1119 02-02

Duration	Duration Rms level of		Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	110.0	80.0	79.9	1.7	-0.1

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	110.0	90.0	90.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level Level reduced by		Further reduced	Difference	Tolerance	Deviation	
at overload (dB)	at overload (dB) 1 dB		3 dB dB		dB	
138.3	137.3	134.3	3.0	1.0	0.0	

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

Single burst duration:

1 msec

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
145.1	144.1	104.1	104.0	2.2	-0.1

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Actual level Tolerance		Deviation
Hz	dB	Measured (dB)	+	-	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.1	1.0	1.0	0.2
8000	92.9	92.0	1.5	3.0	-0.9

-----END-----

(c)Soils Materials Eng. Co., Ltd.

港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0222 03

Page

of

Item tested

Description: Manufacturer: Type/Model No.:

Adaptors used:

Sound Level Meter (Class 1) B & K 2250

B&K 4189

Preamp Microphone B & K ZC0032 2755097 19223

Item submitted by

Serial/Equipment No.:

Customer Name:

Lam Geotechnics Limited.

Address of Customer:

Request No.: Date of receipt:

22-Feb-2021

2701778

Date of test:

23-Feb-2021

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226

Serial No. 2288444

Expiry Date: 23-Aug-2021

Traceable to: CIGISMEC

Signal generator

DS 360

33873

19-May-2021

CEPREI

Ambient conditions

Temperature:

Relative humidity:

22 ± 1 °C 55 ± 10 % 1000 ± 5 hPa

Air pressure:

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- 3, The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Jungi

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

24-Feb-2021

Company Chop:

The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev C/01/02/2007

合試驗有限公司

港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0222 03

Page

2

1, **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

_			Expanded	Coverage
Test:	Subtest:	Status:	Uncertanity (dB)	Factor
Self-generated noise	Α	Pass	0.3	
con generated noise	Ĉ	Pass	0.3	
	Lin	Pass		
Linearity range for Leg			1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
Lincority report for CDI	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	A	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100µs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, **Acoustic tests**

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yi

23-Feb-2021

Checked by:

Date:

Fenq una 24-Feb-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

End

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

Microphone

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

SMECLab

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter Page 1 of 5

Serial No.

2755097

Sound level meter type: 2250 Serial No. 2701778 Date 23-Feb-2021

Preamp type: ZC0032 Serial No. 19223 Report: 21CA0222 03

SELF GENERATED NOISE TEST

type:

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting 12.6 dB
Noise level in C weighting 13.8 dB
Noise level in Lin 20.0 dB

4189

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	level	Tolerance	Devia	ition
, , , , , , , , , , , , , , , , , , ,	non-integrated	integrated		non-integrated	integrated
dB	dB	dB	+/- dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
124.0	124.0	124.0	0.7	0.0	0.0
129.0	129.0	129.0	0.7	0.0	0.0
134.0	134.0	134.0	0.7	0.0	0.0
135.0	135.0	135.0	0.7	0.0	0.0
136.0	136.0	136.0	0.7	0.0	0.0
137.0	137.0	137.0	0.7	0.0	0.0
138.0	138.0	138.0	0.7	0.0	0.0
139.0	139.0	139.0	0.7	0.0	0.0
140.0	140.0	140.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	74.0	74.0	0.7	0.0	0.0
69.0	69.0	69.0	0.7	0.0	0.0
64.0	64.0	64.0	0.7	0.0	0.0
59.0	59.0	59.0	0.7	0.0	0.0
54.0	54.0	54.0	0.7	0.0	0.0
49.0	49.0	49.0	0.7	0.0	0.0
44.0	44.0	44.0	0.7	0.0	0.0
39.0	39.0	39.0	0.7	0.0	0.0

(c)Soils Materials Eng. Co., Ltd. Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 2 of 5

Sound level me	ter type:	2250	S	erial No.	2701778	Date	e 23-Feb-	2021
Microphone	type:	4189	S	erial No.	2755097			
Preamp	type:	ZC0032	S	erial No.	19223	Rep	ort: 21CA022	22 03
34.0		34.0	34.0	0.7		0.0	0.0	
33.0		33.0	33.0	0.7		0.0	0.0	
32.0		32.0	32.0	0.7		0.0	0.0	
31.0		31.0	31.0	0.7		0.0	0.0	
30.0		30.0	30.0	0.7		0.0	0.0	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation	
dB	dB	dB	+/- dB	dB	
20-140	30.0	30.0	0.7	0.0	
20-140	138.0	138.0	0.7	0.0	

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Frequency weighting A:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	N/A	54.6	1.5	1.5	0.0
63.1	94.0	67.8	0.0	67.8	1.5	1.5	0.0
125.9	94.0	77.9	0.0	77.9	1.0	1.0	0.0
251.2	94.0	85.4	0.0	85.4	1.0	1.0	0.0
501.2	94.0	90.8	0.0	90.7	1.0	1.0	-0.1
1995.0	94.0	95.2	0.0	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0	0.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0	0.0
12590.0	94.0	89.7	-0.3	89.4	3.0	6.0	0.0

Frequency weighting C:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	N/A	91.1	1.5	1.5	0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

SMECLab

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 3 of 5

Sound level met	er type:	2250		Serial No.	270	1778	Date 23	-Feb-2021
Microphone	type:	4189		Serial No.	275	5097		
Preamp	type:	ZC0032		Serial No.	192	23	Report: 21	CA0222 03
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	-0.1	93.1	1.0	1.0	0.0	
7943.0	94.0	91.0	-0.3	90.7	1.5	3.0	0.0	
12590.0	94.0	87.8	-0.3	87.5	3.0	6.0	0.0	

Frequency weighting Lin:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	N/A	94.1	1.5	1.5	0.1
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	94.0	1.0	1.0	0.1
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590.0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

^{*}Deviation = Actual level - (Expected level + Correction of electrical response)

The correction of electrical response is specified in the Table A.2 of technical documentation of BE 1712-21. The maximum expanded uncertainty of correction of electrical response is 0.29 dB.

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	115.0	115.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

	(1.1.3)	idin nord)			
Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
116.0	111.9	111.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us

(c)Soils Materials Eng. Co., Ltd.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

2250

Serial No.

2701778

Date 2

23-Feb-2021

Microphone Preamp type: type: 4189 ZC0032 Serial No. Serial No. 2755097 19223

Report: 21CA0222 03

rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range.

Positive polarities:

(Weighting C, set the generator signal to single, Lcpeak)

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.6	2.0	0.6

Negative polarities:

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
119.0	119.0	119.6	2.0	0.6

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

(Set to INT)

	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	118.0+6.6	118.0	117.9	0.5	-0.1

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	Single burst indication		Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
120.0	111.2	111.2	2.0	0.0

Repeated at 100 Hz

Ref. Level	Repeated bu	ırst indication	Tolerance	Deviation	
dB	Expected (dB)	Actual (dB)	+/- dB	dB	
120.0	117.3	117.2	1.0	-0.1	

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ

(c)Soils Materials Eng. Co., Ltd.

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

2250

Serial No.

2701778

Date 23-Feb-2021

Microphone Preamp type:

4189 ZC0032 Serial No. Serial No. 2755097 19223

Report: 21CA0222 03

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Lea:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	110.0	80.0	80.0	1.7	0.0

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	ďΒ	+/- dB	dB
10.0	110.0	90.0	90.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level Level reduced by		Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
134.9	133.9	130.9	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

Single burst duration:

1 msec

Rms level	Rms level Level reduced by		Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
141.6	140.6	100.6	100.6	2.2	0.0

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	, , , , , , , , , , , , , , , , , , ,		Tolerance (dB)		Deviation	
Hz	dB	Measured (dB)	+	-	dB	
1000	94.0	94.0	0.0	0.0	0.0	
125	77.9	78.0	1.0	1.0	0.1	
8000	92.9	91.9	1.5	3.0	-1.0	

-----END-----

(c)Soils Materials Eng. Co., Ltd

香港新界葵涌水基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

Certificate No.:

21CA0429 02

Page

of

2

Item tested

Description:

Sound Level Meter (Type 1) B & K

Microphone B & K Preamp B & K

Manufacturer:

2250-L

4950

ZC0032

Serial/Equipment No.: Adaptors used:

2722311

2698703

13321

Item submitted by

Customer Name:

Lam Geotechnics Ltd.

Address of Customer:

Request No.:

_

Date of receipt:

29-Apr-2021

Date of test:

30-Apr-2021

Reference equipment used in the calibration

Description:

Multi function sound calibrator

Model: B&K 4226 DS 360 Serial No.

Expiry Date:

Traceable to:

Multi function soun Signal generator or

.0

2288444 61227 23-Aug-2021

CIGISMEC

19-May-2021

CEPREL

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 % 1005 ± 5 hPa

Air pressure:

Test specifications

 The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.

2, The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.

 The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Feng Jung

Actual Measurement data are documented on worksheets.

Approved Signatory:

Date:

03-May-2021

Company Chop:

SENGINEERING COMPANY STORY ST

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

21CA0429 02

Page

of

2

2

1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Expanded Uncertanity (dB)	Coverage Factor
0.16				
Self-generated noise	A	Pass	0.3	
	C	Pass	0.8	
	Lin	Pass	1.6	
Linearity range for Leq	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
	Reference SPL on all other ranges	Pass	0.3	
	2 dB below upper limit of each range	Pass	0.3	
	2 dB above lower limit of each range	Pass	0.3	
Linearity range for SPL	At reference range , Step 5 dB at 4 kHz	Pass	0.3	
Frequency weightings	Α	Pass	0.3	
	С	Pass	0.3	
	Lin	Pass	0.3	
Time weightings	Single Burst Fast	Pass	0.3	
	Single Burst Slow	Pass	0.3	
Peak response	Single 100μs rectangular pulse	Pass	0.3	
R.M.S. accuracy	Crest factor of 3	Pass	0.3	
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3	
	Repeated at frequency of 100 Hz	Pass	0.3	
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3	
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3	
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4	
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4	
Overload indication	SPL	Pass	0.3	
	Leq	Pass	0.4	

2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Expanded Uncertanity (dB)	Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3	
	Weighting A at 8000 Hz	Pass	0.5	

3, Response to associated sound calibrator

N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

Date:

Fung Chi Yip 30-Apr-2021 _---

Checked by:

Date:

Chan Yuk Yiu 03-May-2021

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

SMECLab

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 1 of 5

Sound level meter type:

2250-L

Serial No.

2722311

Date 30

30-Apr-2021

Microphone Preamp type: type: 4950 ZC0032 Serial No. Serial No. 2698703 13321

Report: 21CA0429 02

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting

13.4

dB

Noise level in C weighting

16.5

dΒ

Noise level in Lin

23.2

dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actua	l level	Tolerance	Devia	ation
	non-integrated	integrated		non-integrated	integrated
dB	dB	dB	+/- dB	dB	dB
94.0	94.0	94.0	0.7	0.0	0.0
99.0	99.0	99.0	0.7	0.0	0.0
104.0	104.0	104.0	0.7	0.0	0.0
109.0	109.0	109.0	0.7	0.0	0.0
114.0	114.0	114.0	0.7	0.0	0.0
119.0	119.0	119.0	0.7	0.0	0.0
124.0	124.0	124.0	0.7	0.0	0.0
129.0	129.0	129.0	0.7	0.0	0.0
134.0	134.0	134.0	0.7	0.0	0.0
135.0	135.0	135.0	0.7	0.0	0.0
136.0	136.0	136.0	0.7	0.0	0.0
137.0	137.0	137.0	0.7	0.0	0.0
138.0	138.0	138.0	0.7	0.0	0.0
139.0	139.0	139.0	0.7	0.0	0.0
140.0	140.0	140.0	0.7	0.0	0.0
89.0	89.0	89.0	0.7	0.0	0.0
84.0	84.0	84.0	0.7	0.0	0.0
79.0	79.0	79.0	0.7	0.0	0.0
74.0	74.0	74.0	0.7	0.0	0.0
69.0	69.0	69.0	0.7	0.0	0.0
64.0	64.0	64.0	0.7	0.0	0.0
59.0	59.0	59.0	0.7	0.0	0.0
54.0	54.0	54.0	0.7	0.0	0.0
49.0	49.0	49.0	0.7	0.0	0.0
44.0	43.9	43.9	0.7	-0.1	-0.1
39.0	39.0	39.0	0.7	0.0	0.0

(c)Soils Materials Eng. Co., Ltd.

SMECLab

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 2 of 5

Sound level meter	er type:	2250-L	Se	rial No.	2722311	Date	e 30-Apr-2	2021
Microphone Preamp	type: type:	4950 ZC0032		rial No. rial No.	2698703 13321	Rep	ort: 21CA042	29 02
34.0		34.0	34.0	0.7		0.0	0.0	
33.0		33.0	33.0	0.7		0.0	0.0	
32.0		32.0	32.0	0.7		0.0	0.0	
31.0		31.0	31.0	0.7		0.0	0.0	
30.0		30.0	30.0	0.7		0.0	0.0	

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation	
dB	dB	dB	+/- dB	dB	
20-140	30.0	30.0	0.7	0.0	
20 140	138.0	138.0	0.7	0.0	

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL.

Frequency weighting A:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	_	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	54.6	N/A	54.5	1.5	1.5	-0.1
63.1	94.0	67.8	0.0	67.8	1.5	1.5	0.0
125.9	94.0	77.9	0.0	77.9	1.0	1.0	0.0
251.2	94.0	85.4	0.0	85.4	1.0	1.0	0.0
501.2	94.0	90.8	0.0	90.8	1.0	1.0	0.0
1995.0	94.0	95.2	0.0	95.2	1.0	1.0	0.0
3981.0	94.0	95.0	-0.1	94.9	1.0	1.0	0.0
7943.0	94.0	92.9	-0.3	92.6	1.5	3.0	0.0
12590.0	94.0	89.7	-0.3	89.4	3.0	6.0	0.0

Frequency weighting C:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolerance(dB)		Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	91.0	N/A	91.1	1.5	1.5	0.1
63.1	94.0	93.2	0.0	93.2	1.5	1.5	0.0
125.9	94.0	93.8	0.0	93.8	1.0	1.0	0.0

(c)Soils Materials Eng. Co., Ltd.

に合言、原介 「PR ム 可」 OILS & MATERIALS ENGINEERING CO., LTD. S 法 異 異 薬 預 永 某 略 ? ? ? 4 魅 好 奈 奈 創 科 士 盲

SMECLab

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 3 of 5

Sound level me	ter type:	2250-L		Serial No.	272	2311	Date 30-A	Apr-2021
Microphone Preamp	type: type:	4950 ZC0032		Serial No. Serial No.	269 133	8703 21	Report: 21C	A0429 02
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	0.0	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	-0.1	93.1	1.0	1.0	0.0	
7943.0	94.0	91.0	-0.3	90.7	1.5	3.0	0.0	
12590.0	94.0	87.8	-0.3	87.5	3.0	6.0	0.0	

Frequency weighting Lin:

Frequency	Ref. level	Expected level	Correction of electrical response	Actual level	Tolera	nce(dB)	Deviation *
Hz	dB	dB	dB	dB	+	-	dB
1000.0	94.0	94.0	0.0	94.0	0.0	0.0	0.0
31.6	94.0	94.0	N/A	94.1	1.5	1.5	0.1
63.1	94.0	94.0	0.0	94.0	1.5	1.5	0.0
125.9	94.0	94.0	0.0	94.0	1.0	1.0	0.0
251.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
501.2	94.0	94.0	0.0	94.0	1.0	1.0	0.0
1995.0	94.0	94.0	0.0	94.0	1.0	1.0	0.0
3981.0	94.0	94.0	-0.1	93.9	1.0	1.0	0.0
7943.0	94.0	94.0	-0.3	93.7	1.5	3.0	0.0
12590.0	94.0	94.0	-0.3	93.7	3.0	6.0	0.0

^{*}Deviation = Actual level - (Expected level + Correction of electrical response)

The correction of electrical response is specified in the Table A.2 of technical documentation of BE 1853-11. The maximum expanded uncertainty of correction of electrical response is 0.3 dB.

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
136.0	135.0	135.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
136.0	131.9	131.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the

(c)Soils Materials Eng. Co., Ltd.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 4 of 5

Sound level meter type:

2250-L

Serial No. 2722311

Date 30-Apr-2021

Microphone Preamp

type: type: 4950 ZC0032 Serial No. Serial No. 2698703 13321

Report: 21CA0429 02

10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range.

Positive polarities:

(Weighting C, set the generator signal to single, Lcpeak)

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
139.0	139.0	137.5	2.0	-1.5

Negative polarities:

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
139.0	139.0	137.5	2.0	-1.5

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

(Set to INT)

	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation
Time wighting	dB	dB	indication(dB)	+/- dB	dB
Slow	118.0+6.6	118.0	117.9	0.5	-0.1

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:

2000 Hz

Amplitude:

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Level	Single burs	t indication	Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
140.0	131.2	131.1	2.0	-0.1

Repeated at 100 Hz

Ref. Level	Repeated bu	ırst indication	Tolerance	Deviation
dB	Expected (dB)	Actual (dB)	+/- dB	dB
140.0	137.3	137.2	1.0	-0.1

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:

4000 Hz

Duration of tone burst:

1 ms

Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ

(c)Soils Materials Eng. Co., Ltd.

SMECLab

香港新界獎涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

Test Data for Sound Level Meter

Page 5 of 5

Sound level meter type:

2250-L

Serial No. 2722311

Date 30-Apr-2021

Microphone Preamp

type: type: 4950 ZC0032 Serial No. Serial No. 2698703 13321

Report: 21CA0429 02

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:

10 sec

The integrating sound level meter set to Leg:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	110.0	80.0	80.0	1.7	0.0

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	110.0	90.0	90.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequency:

2000 Hz

Amplitude:

2 dB below the upper limit of the primary indicator range.

Burst repetition frequency:

40 Hz

Tone burst signal:

11 cycles of a sine wave of frequency 2000 Hz.

Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation
at overload (dB)	1 dB	3 dB	dB	dB	dB
135.5	134.5	131.5	3.0	1.0	0.0

For integrating SLM, with the instrument indicating Leq.

For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following: The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

Test frequency:

4000 Hz

Integration time:
Single burst duration:

10 sec 1 msec

Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
142.3	141.3	101.3	101.3	2.2	0.0

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency	Expected level	Actual level	Tolerar	nce (dB)	Deviation
Hz	dB	Measured (dB)	+	_	dB
1000	94.0	94.0	0.0	0.0	0.0
125	77.9	78.0	1.0	1.0	0.1
8000	92.9	93.6	1.5	3.0	0.7

-----END-----

(c)Soils Materials Eng. Co., Ltd.

HBK 校正實驗室

HBK Calibration Laboratory

校正證書

CALIBRATION

CERTIFICATE

- 文字	# 41	うりむり	Cantifficate	AT. Y	THORT	20210	000
竝	青絲	用玩(Certificate	NO.	EDRET	-20210	ルレスス

第 1 頁 , 共 17 頁(Pagel of 17)

委託單位:	LAM Geotechnics Li	mited					
Customer:							-
地址:	11/F Centre Point, China	181-185 Glouce	ester Road,	Wanchai,	Hong	Kong	S. A. R of
Address:							<u>-</u>
儀器名稱:	Nexus調適放大器						
Equipment:							_
型號規格:	2693-0S4						
Model/Type:	-						_
製造商:	Bruel & Kjaer						
Manufacture:				· .			_
機 身 號:	2099340						
Serial No.	T						_
接收日期:	2021-06-11	校正日期:	202	21-06-22			
Date of Recept		Date of Ca	1.				_
批准日期:	2021-06-24						
Date of Approve							

實驗室印章 Chop

台灣思百吉股份有限公司

Bruel & Kjaer

地址/Addr: 台北市民生東路三段128號13樓之一

電話/Tel: +886 2 25462988

網址/Website: www.bksv.cn / www.bksv.com

主 管

Approved by

審核

Inspected by

校正

Calibrated by

萬 狱

王韋凱

Bruel & Kjaer Division of Spectris Taiwan Limited Bruel & Kjaer

13F-1, No.128, Sec.3, Min Sheng E. Road, Taipei City 105, Taiwan, R. O.C.

傳真/Fax: +886 2 25462989

HBK 校正實驗室

HBK Calibration Laboratory

校正說明

Directions of Calibration

證書編號(Certificate No.): HBKT-20210022

第 2 頁, 共 17 頁 (Page2 of 17)

- 1 本實驗室所出具的數據均可溯源到國家計量基準和國際單位制(SI)。 All data issued by this calibration laboratory are traceable to national primary standards and the International System of Unit(SI).
- 2 本次測量結果僅與被測件有關。

The measurement results are only related to the Unit Under Test.

- 3 本次校正的技術依據(Reference documents for the calibration)
 本次校準依據 P_2690_A12 Bruel & Kjaer NEXUS 2690 麥克風输入型調適放大器校正程序 进行。
 The calibration has been performed in accordance with P_2690_A12 Calibration Procedure for Nexus Range of conditioning Amplifiers Microphone Input.
- 4 本次校正所使用的主要測量標準 (Main measurement standards used during the calibration)

設備名稱/型號 機身編號 不確定度或準確度等級 溯源至/證書編號 有效期至 或最大允許誤差 Uncertainty or Accuracy Traceable to/ Equipment/Model Serial No. Due Date Class or MPE Certificate No. AC Voltage $U_{\rm rel}$ (0.001% \sim 0.016%), k =2 DC Voltage $U_{\rm rel}$ (0.002% Multimeter/ 2823A13040 財團法人台灣電子 2022-01-10 HP/3458A 檢驗中心/21-01-BAC-129-02L $\sim 0.225\%)^{161}_{16} \hat{k} = 2$

- 5 本次校正中主要校正參數的不確定度分別是(The uncertainty of main measurement parameter): 詳見校正結果頁。Shown in the calibration result page.
- 6 校正地點(Place of the calibration)

HBK校準實驗室(臺灣)

7 校正環境條件(Environmental condition during the calibration)

溫度(Temperature) 23.2 ℃ 相對溫度(Relative Humidity) 60.9

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 3 页, 共 17 页 (Page 3 of 17)

Channel Type: DELTATRON ZX 2693

Channel No: 1

All measurements made non floating on input and output.

Transducer sensitivity: 1 V/V.

Calibrated output:

The gain from input to calibrated output, is calculated as measured output level, relative to measured input level. Levels are measured by means of a DMM.

Generator frequency: 1 kHz

When applying amplitudes below 31.62 mV (90 dBuV) a 40 dB attenuator is used.

Nexus: HP 10Hz, LP 100kHz

Output bandwidth limited with external 22.4 kHz LP filter.

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Input Level					
100mV/ms-2	5.01187 Volt	V/ms-2	0.0989	0.1012	0.0997	0.0002
316mV/ms-2	5.01187 Volt	V/ms-2	0.3126	0.3199	0.3154	0.0004
1 V/ms-2	1.77828 Volt	V/ms-2	0.9886	1.0116	0.9976	0.0012
3.16 V/ms-2	0.56234 Volt	V/ms-2	3.1261	3.1989	3.1546	0.0037
10 V/ms-2	0.17783 Volt	V/ms-2	9.8855	10.1158	9.9860	0.0116
31.6 V/ms-2	0.05623 Volt	V/ms-2	31.2608	31.9890	31.5712	0.0693
100 V/ms-2	0.01778 Volt	V/ms-2	98.8553	101.1579	99.6039	0.1152
316 V/ms-2	0.00562 Volt	V/ms-2	312.6079	319.8895	314.9737	0.3641
1kV/ms-2	0.00178 Volt	V/ms-2	988.5531	1011.5795	998.0384	1.1514

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 4 页, 共 17 页 (Page 4 of 17)

Lowpass filters:

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV) Nexus: Sens. 1 V/ms-2 (0 dB Gain)

(LP 100 k results not valid with WH 3219 option)

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting I	requency					
LP 0.1k HP 1	20 Hz	%	-1.14	1.16	-0.30	0.12
LP 0.1k HP 1	100 Hz	%	-14.89	-6.67	-11.02	0.42
LP 1 k HP 10	200 Hz	%	-1.14	1.16	-0.31	0.12
LP 1 k HP 10	1000 Hz	%	-14.89	-6.67	-10.99	0.42
LP 3 k HP 10	600 Hz	%	-1.14	1.16	-0.29	0.12
LP 3 k HP 10	3000 Hz	%	-14.89	-6.67	-10.72	0.42
LP 10 k HP 10	2000 Hz	%	-1.14	1.16	-0.39	0.12
LP 10 k HP 10	10000 Hz	%	-14.89	-6.67	-11.10	0.42
LP 22.4k HP 10	4480 Hz	%	-1.14	1.16	-0.44	0.12
LP 22.4k HP 10	22400 Hz	%	-14.89	-6.67	-11.32	0.42
LP 30 k HP 10	6000 Hz	%	-1.14	1.16	-0.34	0.12
LP 30 k HP 10	30000 Hz	%	14.89	-6.67	-10.35	0.42
LP 100 k HP 10	20000 Hz	%	-1.14	1.16	-0.17	0.12
LP 100 k HP 10	60000 Hz	%	-4.50	4.71	1.33	0.47
LP 100 k HP 10	100000 Hz	%	-18.72	-2.28	-12.74	0.62

Highpass filters:

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain), LP 100 kHz.

Parameter		Unit	Lower	Upper Limit	Measured Value	Uncertainty
Nexus setting	Frequency					
HP 0.1	0.1 Hz	%	-14.89	-6.67	-2.26	*
HP 0.1	0.5 Hz	%	-1.14	1.16	-1.11	*
HP 1	$1.0~\mathrm{Hz}$	%	-14.89	-6.67	-10.09	*
HP 1	5.0 Hz	%	-1.14	1.16	-0.60	*
HP 10	10.0 Hz	%	-14.89	-6.67	-10.62	0.42
HP 10	50.0 Hz	%	-1.14	1.16	-0.52	0.12

注: 未经本实验室批准,不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 5 页, 共 17 页 (Page 5 of 17)

Inherent noise:

The Inherent Noise is measured by connecting a short-circuit plug to the input, and measuring the output level by means of a DMM.

Nexus: Sens. 10kV/Pa (80dB Gain), HP 10Hz, LP 100kHz

Input shorted.

Output bandwidth limited with external A filter.

Parameter	Unit	Lower Limit	Upper Limit		Calibration Uncertainty
A weighted	uV		2.00	1.71	*

Reference Generator:

Measure output level from internal generator.

Parameter	Unit	Lower Limit	Upper Limit		Calibration Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	*
Test Tone	dBuV	0.00	0.00	0.00	

Distortion:

Generator signal: 127 dBuV (2.24 Volt), 1 kHz

Nexus: Sens. 1 V/ms-2 (0 dB Gain), HP 10Hz, LP 100kHz

Basetone is rejected with a notchfilter.

Output of the notch filter is digitized with the HP3458A DMM,

and 2. harmonic and 3. harmonic is determined with a DFT.

Parameter	Unit	Upper Limit	Measured Value	Calibration Uncertainty
2. Harmonic	%	0.0030	0.0018	*
3. Harmonic	% 0	0.0030	0.0010	*

注: 未经本实验室批准,不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

校正結果

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 6 页, 共 17 页 (Page 6 of 17)

Channel Type: DELTATRON ZX 2693

Channel No:

All measurements made non floating on input and output.

Transducer sensitivity: 1 V/V.

Calibrated output:

The gain from input to calibrated output, is calculated as measured output level, relative to measured input level. Levels are measured by means of a DMM.

Generator frequency: 1 kHz

When applying amplitudes below 31.62 mV (90 dBuV) a 40 dB attenuator is used.

Nexus: HP 10Hz, LP 100kHz

Output bandwidth limited with external 22.4 kHz LP filter.

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Input Level					
100mV/ms-2	5.01187 Volt	V/ms-2	0.0989	0.1012	0.0998	0.0002
316mV/ms-2	5.01187 Volt	V/ms-2	0.3126	0.3199	0.3156	0.0004
1 V/ms-2	1.77828 Volt	V/ms-2	0.9886	1.0116	0.9980	0.0012
3.16 V/ms-2	0.56234 Volt	V/ms-2	3.1261	3.1989	3.1559	0.0037
10 V/ms-2	0.17783 Volt	V/ms-2	9.8855	10.1158	9.9868	0.0116
31.6 V/ms-2	0.05623 Volt	V/ms-2	31.2608	31.9890	31.5751	0.0693
100 V/ms-2	0.01778 Volt	V/ms-2	98.8553	101.1579	99.6129	0.1152
316 V/ms-2	0.00562 Volt	V/ms-2	312.6079	319.8895	314.9994	0.3641
1kV/ms-2	0.00178 Volt	V/ms-2	988.5531	1011.5795	997.9563	1.1514

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 7 页, 共 17 页 (Page 7 of 17)

Lowpass filters:

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV) Nexus: Sens. 1 V/ms-2 (0 dB Gain)

(LP 100 k results not valid with WH 3219 option)

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting F	requency					
LP 0.1k HP 1	20 Hz	%	-1.14	1.16	-0.27	0.12
LP 0.1k HP 1	100 Hz	%	-14.89	-6.67	-11.00	0.42
LP 1 k HP 10	200 Hz	%	-1.14	1.16	-0.27	0.12
LP 1 k HP 10	1000 Hz	%	-14.89	-6.67	-11.08	0.42
LP 3 k HP 10	600 Hz	%	-1.14	1.16	-0.26	0.12
LP 3 k HP 10	3000 Hz	%	-14.89	-6.67	-10.74	0.42
LP 10 k HP 10	2000 Hz	%	-1.14	1.16	-0.35	0.12
LP 10 k HP 10	10000 Hz	%	-14.89	-6.67	-11.39	0.42
LP 22.4k HP 10	4480 Hz	%	-1.14	1.16	-0.38	0.12
LP 22.4k HP 10	22400 Hz	%	-14.89	-6.67	-11.41	0.42
LP 30 k HP 10	6000 Hz	%	-1.14	1.16	-0.31	0.12
LP 30 k HP 10	30000 Hz	%	-14.89	-6.67	-10.58	0.42
LP 100 k HP 10	20000 Hz	%	-1.14	1.16	-0.11	0.12
LP 100 k HP 10	60000 Hz	%	-4.50	4.71	1.37	0.47
LP 100 k HP 10	100000 Hz	%	-18.72	-2.28	-12.97	0.62

Highpass filters:

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain), LP 100 kHz.

Parameter		Unit	Lower Limit	Upper Limit	Measured Value	Calibration Uncertainty
Nexus setting	Frequency					
HP 0.1	0.1 Hz	%	-14.89	-6.67	-2.90	*
HP 0.1	0.5 Hz	%	-1.14	1.16	-1.16	*
HP 1	1.0 Hz	%	-14.89	-6.67	-10.22	*
HP 1	5.0 Hz	%	-1.14	1.16	-0.58	*
HP 10	10.0 Hz	%	-14.89	-6.67	-10.58	0.42
HP 10	50.0 Hz	%	-1.14	1.16	-0.49	0.12

注: 未经本实验室批准,不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 8 页, 共 17 页 (Page 8 of 17)

Inherent noise:

The Inherent Noise is measured by connecting a short-circuit plug to the input, and measuring the output level by means of a DMM.

Nexus: Sens. 10kV/Pa (80dB Gain), HP 10Hz, LP 100kHz

Input shorted.

Output bandwidth limited with external A filter.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
A weighted	$\mathbf{u}\mathbf{V}$		2.00	1.84	*

Reference Generator:

Measure output level from internal generator.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	*
Test Tone	dBuV	0.00	0.00	0.00	*

Distortion:

Generator signal: 127 dBuV (2.24 Volt), 1 kHz

Nexus: Sens. 1 V/ms-2 (0 dB Gain), HP 10Hz, LP 100kHz

Basetone is rejected with a notchfilter.

Output of the notch filter is digitized with the HP3458A DMM,

and 2. harmonic and 3. harmonic is determined with a DFT.

Parameter	Unit	Upper Limit		Calibration Uncertainty
2. Harmonic 3. Harmonic	% %	0.0030 0.0030	0.0031 0.0008	*

注: 未经本实验室批准,不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 9 页, 共 17 页 (Page 9 of 17)

Channel Type: DELTATRON ZX 2693

Channel No: 3

All measurements made non floating on input and output.

Transducer sensitivity: 1 V/V.

Calibrated output:

The gain from input to calibrated output, is calculated as measured output level, relative to measured input level. Levels are measured by means of a DMM.

Generator frequency: 1 kHz

When applying amplitudes below 31.62 mV (90 dBuV) a 40 dB attenuator is used.

Nexus: HP 10Hz, LP 100kHz

Output bandwidth limited with external 22.4 kHz LP filter.

			Lower	Upper	Measured	Calibration
Parameter		Unit	Limit	Limit	Value	Uncertainty
Nexus setting	Input Level					
100mV/ms-2	5.01187 Volt	V/ms-2	0.0989	0.1012	0.0997	0.0002
316mV/ms-2	5.01187 Volt	V/ms-2	0.3126	0.3199	0.3153	0.0004
1 V/ms-2	1.77828 Volt	V/ms-2	0.9886	1.0116	0.9972	0.0012
3.16 V/ms-2	0.56234 Volt	V/ms-2	3.1261	3.1989	3.1535	0.0037
10 V/ms-2	0.17783 Volt	V/ms-2	9.8855	10.1158	9.9791	0.0116
31.6 V/ms-2	0.05623 Volt	V/ms-2	31.2608	31.9890	31.5525	0.0693
100 V/ms-2	0.01778 Volt	V/ms-2	98.8553	101.1579	99.5377	0.1152
316 V/ms-2	0.00562 Volt	V/ms-2	312.6079	319.8895	314.7015	0.3641
1kV/ms-2	0.00178 Volt	V/ms-2	988.5531	1011.5795	997.1946	1.1514

UNRESTRICTED

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第10页, 共17页 (Page 10 of 17)

Lowpass filters:

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV) Nexus: Sens. 1 V/ms-2 (0 dB Gain)

(LP 100 k results not valid with WH 3219 option)

		Lower	Upper	Measured	Calibration	
Parameter		Unit	Limit	Limit	Value	Uncertainty
Nexus setting I	Frequency					
LP 0.1k HP 1	20 Hz	%	-1.14	1.16	-0.34	0.12
LP 0.1k HP 1	100 Hz	%	-14.89	-6.67	-10.97	0.42
LP 1 k HP 10	200 Hz	%	-1.14	1.16	-0.37	0.12
LP 1 k HP 10	1000 Hz	%	-14.89	-6.67	-11.67	0.42
LP 3 k HP 10	600 Hz	%	-1.14	1.16	-0.33	0.12
LP 3 k HP 10	3000 Hz	%	-14.89	-6.67	-10.84	0.42
LP 10 k HP 10	2000 Hz	%	-1.14	1.16	-0.45	0.12
LP 10 k HP 10	10000 Hz	0/0	-14.89	-6.67	-11.62	0.42
LP 22.4k HP 10	4480 Hz	%	-1.14	1.16	-0.47	0.12
LP 22.4k HP 10	22400 Hz	%	-14.89	-6.67	-11.08	0.42
LP 30 k HP 10	6000 Hz	%	-1.14	1.16	-0.40	0.12
LP 30 k HP 10	30000 Hz	%	-14.89	-6.67	-10.67	0.42
LP 100 k HP 10	20000 Hz	%	-1.14	1.16	-0.22	0.12
LP 100 k HP 10	60000 Hz	%	-4.50	4.71	1.28	0.47
LP 100 k HP 10	100000 Hz	%	-18.72	-2.28	-12.99	0.62

注: 未经本实验室批准,不得部份复制此校正证书。

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第11页, 共17页 (Page 11 of 17)

Highpass filters:

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain), LP 100 kHz.

			Lower	Upper	Measured	Calibration
Parameter		Unit	Limit	Limit	Value	Uncertainty
Nexus setting	Frequency					
HP 0.1	0.1 Hz	%	-14.89	-6.67	-1.48	*
HP 0.1	0.5 Hz	%	-1.14	1.16	-1.16	*
HP 1	1.0 Hz	%	-14.89	-6.67	-10.11	*
HP 1	5.0 Hz	%	-1.14	1.16	-0.64	*
HP 10	10.0 Hz	%	-14.89	-6.67	-10.56	0.42
HP 10	50.0 Hz	%	-1.14	1.16	-0.55	0.12

Inherent noise:

The Inherent Noise is measured by connecting a short-circuit plug to the input, and measuring the output level by means of a DMM.

Nexus: Sens. 10kV/Pa (80dB Gain), HP 10Hz, LP 100kHz

Input shorted.

Output bandwidth limited with external A filter.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
8					
A weighted	\mathbf{uV}		2.00	1.79	*

注: 未经本实验室批准,不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第12页, 共17页 (Page 12 of 17)

Reference Generator:

Measure output level from internal generator.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	*
Test Tone	dBuV	0.00	0.00	0.00	*

Distortion:

Generator signal: 127 dBuV (2.24 Volt), 1 kHz

Nexus: Sens. 1 V/ms-2 (0 dB Gain), HP 10Hz, LP 100kHz

Basetone is rejected with a notchfilter.

Output of the notch filter is digitized with the HP3458A DMM,

and 2. harmonic and 3. harmonic is determined with a DFT.

		Upper	Measured	Calibration
Parameter	Unit	Limit	Value	Uncertainty
		10 100 100 100 100 100 100 100 100 100		
2. Harmonic	%	0.0030	0.0024	*
3. Harmonic	0/0	0.0030	0.0007	*

注: 未经本实验室批准,不得部份复制此校正证书。

校正結果

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第13页, 共17页 (Page 13 of 17)

Channel Type: DELTATRON ZX 2693

Channel No:

All measurements made non floating on input and output.

Transducer sensitivity: 1 V/V.

Calibrated output:

The gain from input to calibrated output, is calculated as measured output level, relative to measured input level. Levels are measured by means of a DMM.

Generator frequency: 1 kHz

When applying amplitudes below 31.62 mV (90 dBuV) a 40 dB attenuator is used.

Nexus: HP 10Hz, LP 100kHz

Output bandwidth limited with external 22.4 kHz LP filter.

			Lower	Upper	Measured	Calibration
Parameter		Unit	Limit	Limit	Value	Uncertainty
Nexus setting	Input Level	*				
100 mV/ms-2	5.01187 Volt	V/ms-2	0.0989	0.1012	0.0998	0.0002
316mV/ms-2	5.01187 Volt	V/ms-2	0.3126	0.3199	0.3156	0.0004
1 V/ms-2	1.77828 Volt	V/ms-2	0.9886	1.0116	0.9981	0.0012
3.16 V/ms-2	0.56234 Volt	V/ms-2	3.1261	3.1989	3.1561	0.0037
10 V/ms-2	0.17783 Volt	V/ms-2	9.8855	10.1158	9.9870	0.0116
31.6 V/ms-2	0.05623 Volt	V/ms-2	31.2608	31.9890	31.5770	0.0693
100 V/ms-2	0.01778 Volt	V/ms-2	98.8553	101.1579	99.6130	0.1152
316 V/ms-2	0.00562 Volt	V/ms-2	312.6079	319.8895	314.9729	0.3641
1kV/ms-2	0.00178 Volt	V/ms-2	988.5531	1011.5795	997.9912	1.1514

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第14页, 共17页 (Page 14 of 17)

Lowpass filters:

The frequency response of Lowpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain)

(LP 100 k results not valid with WH 3219 option)

		Lower	Upper	Measure	d Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
Nexus setting Frequency		***************************************			
LP 0.1k HP 1 20 Hz	%	-1.14	1.16	-0.28	0.12
LP 0.1k HP 1 100 Hz	%	-14.89	-6.6 7	-11.00	0.42
LP 1 k HP 10 200 Hz	%	-1.14	1.16	-0.28	0.12
LP 1 k HP 10 1000 Hz	%	-14.89	-6.67	-11.15	0.42
LP 3 k HP 10 600 Hz	%	-1.14	1.16	-0.25	0.12
LP 3 k HP 10 3000 Hz	0/0	-14.89	-6.67	-10.59	0.42
LP 10 k HP 10 2000 Hz	%	-1.14	1.16	-0.34	0.12
LP 10 k HP 10 10000 Hz	%	-14.89	-6.67	-10.89	0.42
LP 22.4k HP 10 4480 Hz	%	-1.14	1.16	-0.36	0.12
LP 22.4k HP 10 22400 Hz	%	-14.89	-6.67	-10.97	0.42
LP 30 k HP 10 6000 Hz	%	-1.14	1.16	-0.30	0.12
LP 30 k HP 10 30000 Hz	%	-14.89	-6.67	-10.64	0.42
LP 100 k HP 10 20000 Hz	%	-1.14	1.16	-0.14	0.12
LP 100 k HP 10 60000 Hz	%	-4.50	4.71	0.98	0.4 7
LP 100 k HP 10 100000 Hz	%	-18.72	-2.28	-13.11	0.62

注: 未经本实验室批准,不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第 15 页, 共 17 页 (Page 15 of 17)

Highpass filters:

The frequency response of Highpass filters is calculated as measured output level relative to measured input level as percentage. Levels are measured by means of a DMM.

Input Level: 1 Volt (120 dBuV)

Nexus: Sens. 1 V/ms-2 (0 dB Gain), LP 100 kHz.

			Lower	Upper	Measured	Calibration
Parameter		Unit	Limit	Limit	Value	Uncertainty
Nexus setting	Frequency					
HP 0.1	0.1 Hz	%	-14.89	-6.67	-2.21	*
HP 0.1	0.5 Hz	%	-1.14	1.16	-1.27	*
HP 1	1.0 Hz	%	-14.89	-6.6 7	-2.43	*
HP 1	5.0 Hz	%	-1.14	1.16	-0.59	*
HP 10	10.0 Hz	%	-14.89	-6.67	-10.63	0.42
HP 10	50.0 Hz	%	-1.14	1.16	-0.49	0.12

Inherent noise:

The Inherent Noise is measured by connecting a short-circuit plug to the input, and measuring the output level by means of a DMM.

Nexus: Sens. 10kV/Pa (80dB Gain), HP 10Hz, LP 100kHz

Input shorted.

Output bandwidth limited with external A filter.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
A weighted	\mathbf{uV}		2.00	1.86	*

注: 未经本实验室批准,不得部份复制此校正证书。

Note: This certificate can't be partly copied if not approved by the laboratory.

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第16页, 共17页 (Page 16 of 17)

Reference Generator:

Measure output level from internal generator.

		Lower	Upper	Measured	Calibration
Parameter	Unit	Limit	Limit	Value	Uncertainty
Ref Tone	dBuV	119.90	120.10	120.02	*
Test Tone	dBuV	0.00	0.00	0.00	*

Distortion:

Generator signal: 127 dBuV (2.24 Volt), 1 kHz

Nexus: Sens. 1 V/ms-2 (0 dB Gain), HP 10Hz, LP 100kHz

Basetone is rejected with a notchfilter.

Output of the notch filter is digitized with the HP3458A DMM,

and 2. harmonic and 3. harmonic is determined with a DFT.

Parameter	Unit	Upper Limit		Calibration Uncertainty
2. Harmonic 3. Harmonic	% %	0.0030 0.0030	0.0021 0.0010	*

注: 未经本实验室批准,不得部份复制此校正证书。

Results of Calibration (continued page)

證書編號(Certificate No.): HBKT-20210022

第17页, 共17页 (Page 17 of 17)

說明 Explanation

- 1. 根據校正規範的相關技術要求,所有參數的校正結論見校正結果首頁概要. According to the technical requests of the calibration procedure, please check the summary on the first page of the calibration result to get the conclusion of this calibration.
- 2. 以星號(*)標稱的校正數據再我們申請的認可校正能力範圍之外,為保證校正結果的完整性, 這部分校正數據也包含在校正證書內.

Results marked by asterisk (*) are outside our scope of accreditation. The measurements are included for completeness.

- 3. 以上校正結果中的不確定度分析的包含概率均為 95% (*k*=2). The confidence probability of uncertainty analysis of the calibration result is 95% (*k*=2).
- 4. 校正參數的不確定度見具體校正結果,參考參數的擴展不確定度見下:

The individual calibration parameter's measurement uncertainty please check the detail calibration result, the main parameters' uncertainties as below:

直流電壓:	測量範圍	(0.1V~1KV)	U = 0.03%,	k=2
DC Voltage	Range of Measurement			
直流電流:	測量範圍	(100uA~1A)	U = 0.02%,	k=2
DC current	Range of Measurement			
交流電壓:	測量範圍	(0.1V~700V)	U = 0.03%,	k=2
AC Voltage	Range of Measurement			
(1kHz)				
				•
交流電流:	測量範圍	(100uA~1A)	U = 0.01%,	k=2
AC Current	Range of Measurement			
(1kHz)				
阻抗:	測量範圍	($1\Omega\sim10\mathrm{M}~\Omega$)	U = 0.01%,	k=2

注: 未经本实验室批准,不得部份复制此校正证书。

Range of Measurement

Resistance

Calibration Certificate

Certificate Number 2021010517

Customer:

Lam Geotechnics Ltd

Model Number Serial Number

Test Results

LxT SE 0005062 **Pass**

Initial Condition

Evaluation Method

Inoperable

Description

Sound Expert LxT

Class 1 Sound Level Meter Firmware Revision: 2.404

Tested with:

PCB 377B02, S/N 173734 Larson Davis CAL291, S/N 0108 Larson Davis CAL200, S/N 9079

Larson Davis PRMLxT1L, S/N 042836

Compliance Standards

Compliant to Manufacturer Specifications and the following standards when combined with

Calibration Certificate from procedure D0001.8378:

IEC 60651:2001 Type 1 IEC 60804:2000 Type 1

IEC 61252:2002 IEC 61260:2001 Class 1

IEC 61672:2013 Class 1

ANSI S1.4-2014 Class 1

Procedure Number

Calibration Date

Calibration Due

Static Pressure

Temperature

Humidity

Technician

D0001.8384

Ron Harris

23.29 °C

86.13 kPa

51.9

26 Aug 2021

%RH

Data reported in dB re 20 µPa.

± 0.25 °C

± 2.0 %RH

± 0.13 kPa

ANSI S1.4 (R2006) Type 1 ANSI S1.11 (R2009) Class 1

ANSI S1.25 (R2007)

ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT & SoundExpert Lxt, I770.01 Rev J Supporting Firmware Version 2.301, 2015-04-30

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to 1/2" adaptor is used with the preamplifier.

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 μPa

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

Standards Used								
Description	Cal Date	Cal Due	Cal Standard					
Larson Davis CAL291 Residual Intensity Calibrator	2020-09-18	2021-09-18	001250					
Hart Scientific 2626-H Temperature Probe	2021-02-04	2022-08-04	006767					
Larson Davis CAL200 Acoustic Calibrator	2021-07-21	2022-07-21	007027					
Larson Davis Model 831	2021-03-02	2022-03-02	007182					
PCB 377A13 1/2 inch Prepolarized Pressure Microphone	2021-03-03	2022-03-03	007185					
SRS DS360 Ultra Low Distortion Generator	2021-04-13	2022-04-13	007635					
Larson Davis 1/2" Preamplifier for Model 831 Type 1	2020-10-06	2021-10-06	PCB0004783					

Acoustic Calibration

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
1000 Hz	114.00	113.80	114.20	0.14	Pass

As Received Level: 116.07 Adjusted Level: 114.00

-- End of measurement results--

Loaded Circuit Sensitivity

Measurement	Test Result [dB re 1 V / Pa]	Lower Limit [dB re 1 V / Pa]	Upper Limit [dB re 1 V / Pa]	Expanded Uncertainty [dB]	Result
1000 Hz	-27.69	-29.61	-26.24	0.14	Pass

-- End of measurement results--

Acoustic Signal Tests, C-weighting

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Expected [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
125	-0.20	-0.20	-1.20	0.80	0.23	Pass
1000	0.13	0.00	-0.70	0.70	0.23	Pass
8000	-2.49	-3.00	-5.50	-1.50	0.32	Pass

- End of measurement results--

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Page 2 of 3

D0001.8406 Rev E

Self-generated Noise

Measured according to IEC 61672-3:2013 11.1 and ANSI S1.4-2014 Part 3: 11.1

Measurement

Test Result [dB]

A-weighted

40.32

- End of measurement results--

-- End of Report--

Signatory: Ron Harris

Calibration Certificate

Certificate Number 2021010409

Customer:

Lam Geotechnics Ltd

Model NumberLxT SEProcedure NumberD0001.8378Serial Number0005062TechnicianRon HarrisTest ResultsPassCalibration Date24 Aug 2021

Initial Condition Inoperable Calibration Due

Temperature23.69 °C \pm 0.25 °CDescriptionSound Expert LxTHumidity52.8 %RH \pm 2.0 %RH

Class 1 Sound Level Meter Static Pressure 86.15 kPa ± 0.13 kPa

Firmware Revision: 2.404

Evaluation Method Tested electrically using Larson Davis PRMLxT1L S/N 042836 and a 12.0 pF capacitor to

simulate microphone capacitance. Data reported in dB re 20 µPa assuming a microphone

sensitivity of 23.6 mV/Pa.

Compliance Standards Compliant to Manufacturer Specifications and the following standards when combined with

Calibration Certificate from procedure D0001.8384:

IEC 60651:2001 Type 1 ANSI S1.4-2014 Class 1
IEC 60804:2000 Type 1 ANSI S1.4 (R2006) Type 1
IEC 61252:2002 ANSI S1.25 (R2007)
IEC 61672:2013 Class 1 ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis LxT Manual for SoundTrack LxT & SoundExpert Lxt, I770.01 Rev O Supporting Firmware Version 4.0.5, 2019-09-10

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 μ Pa

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3,

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-8-24T17:09:29 Page 1 of 13

D0001.8407 Rev E

for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

	Standards Used	i		
Description	Cal Date	Cal Due	Cal Standard	
Hart Scientific 2626-H Temperature Probe	2021-02-04	2022-08-04	006767	
SRS DS360 Ultra Low Distortion Generator	2021-01-05	2022-01-05	007118	

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result	
10.00	-70.36	0.04	-inf	3.00	0.25	Pass	
12.59	-63.40	0.00	-inf	2.50	0.25	Pass	
15.85	-56.70	0.00	-4.00	2.00	0.25	Pass	
19.95	-50.41	0.09	-2.00	2.00	0.25	Pass	
25.12	-4 4.68	0.02	-1.50	2.00	0.25	Pass	
31.62	-39.40	0.00	-1.50	1.50	0.25	Pass	
39.81	-34.61	-0.01	-1.00	1.00	0.25	Pass	
50.12	-30.27	-0.07	-1.00	1.00	0.25	Pass	
63.10	-26.20	0.00	-1.00	1.00	0.25	Pass	
79.43	-22.47	0.03	-1.00	1.00	0.25	Pass	
100.00	-19.15	-0.05	-1.00	1.00	0.25	Pass	
125.89	-16.15	-0.05	-1.00	1.00	0.25	Pass	
158.49	-13.32	0.08	-1.00	1.00	0.25	Pass	
199.53	-10.86	0.04	-1.00	1.00	0.25	Pass	
251.19	-8.59	0.01	-1.00	1.00	0.25	Pass	
316.23	-6.48	0.12	-1.00	1.00	0.25	Pass	
398.11	-4.91	-0.11	-1.00	1.00	0.25	Pass	
501.19	-3.34	-0.14	-1.00	1.00	0.25	Pass	
630.96	-2.06	-0.16	-1.00	1.00	0.25	Pass	
794.33	-0.95	-0.15	-1.00	1.00	0.25	Pass	
1,000.00	0.00	0.00	-0.70	0.70	0.25	Pass	
1,258.93	0.94	0.34	-1.00	1.00	0.25	Pass	
1,584.89	1.01	0.01	-1.00	1.00	0.25	Pass	
1,995.26	0.95	-0.25	-1.00	1.00	0.25	Pass	
2,511.89	1.21	-0.09	-1.00	1.00	0.25	Pass	
3,162.28	1.17	-0.03	-1.00	1.00	0.25	Pass	
3,981.07	0.78	-0.22	-1.00	1.00	0.25	Pass	
5,011.87	0.50	0.00	-1.50	1.50	0.25	Pass	
6,309.57	-0.50	-0.40	-2.00	1.50	0.25	Pass	
7,943.28	-1.22	-0.12	-2.50	1.50	0.25	Pass	
10,000.00	-2.43	0.07	-3.00	2.00	0.25	Pass	
12,589.25	-4.35	-0.05	-5.00	2.00	0.25	Pass	
15,848.93	-6.84	-0.24	-16.00	2.50	0.25	Pass	
19,952,62	-10.13	-0.83	-inf	3.00	0.25	Pass	
		En	d of measurement res	ults			

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
10.00	-14.50	-0.20	-inf	3.00	0.25	Pass
12.59	-11.35	-0.15	-inf	2.50	0.25	Pass
15.85	-8.57	-0.06	-4.00	2.00	0.25	Pass
19.95	-6.20	0.00	-2.00	2.00	0.25	Pass
25.12	-4.38	0.02	-1.50	2.00	0.25	Pass
31.62	-2.98	0.02	-1.50	1.50	0.25	Pass
39.81	-1.99	0.01	-1.00	1.00	0.25	Pass
50.12	-1.31	-0.01	-1.00	1.00	0.25	Pass
63.10	-0.82	-0.02	-1.00	1.00	0.25	Pass
79.43	-0.47	0.03	-1.00	1.00	0.25	Pass
100.00	-0.32	-0.02	-1.00	1.00	0.25	Pass
125.89	-0.22	-0.02	-1.00	1.00	0.25	Pass
158.49	-0.05	0.05	-1.00	1.00	0.25	Pass
199.53	-0.02	-0.02	-1.00	1.00	0.25	Pass
251.19	0.04	0.03	-1.00	1.00	0.25	Pass
316,23	0.15	0.15	-1.00	1.00	0.25	Pass
398.11	-0.07	-0.07	-1.00	1.00	0.25	Pass
501.19	-0.09	-0.09	-1.00	1.00	0.25	Pass
630.96	-0.13	-0.13	-1.00	1.00	0.25	Pass
794.33	-0.11	-0.11	-1.00	1.00	0.25	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.25	Pass
1,258.93	0.32	0.32	-1.00	1.00	0.25	Pass
1,584.89	-0.06	0.04	-1.00	1.00	0.25	Pass
1,995.26	-0.42	-0.22	-1.00	1.00	0,25	Pass
2,511.89	-0.36	-0.06	-1.00	1.00	0.25	Pass
3,162.28	-0.53	-0.03	-1.00	1.00	0.25	Pass
3,981.07	-1.00	-0.20	-1.00	1.00	0.25	Pass
5,011.87	-1.34	-0.04	-1.50	1.50	0.25	Pass
6,309.57	-2.37	-0.37	-2.00	1.50	0.25	Pass
7,943.28	-3.12	-0.12	- 2.50	1.50	0.25	Pass
10,000.00	-4.34	0.06	-3.00	2.00	0.25	Pass
12,589.25	-6.27	-0.07	-5.00	2.00	0.25	Pass
15,848.93	-8.77	-0.27	-16.00	2.50	0.25	Pass
19,952.62	-12.06	-0.85	-inf	3.00	0.25	Pass
		End	l of measurement res	ults—		

Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

Frequency [Hz]	Test Result [dB]	Deviation [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
10.00	-0.29	-0.29	-inf	3.00	0.25	Pass
12.59	-0.20	-0.20	-inf	2.50	0.25	Pass
15.85	-0.12	-0.12	-4.00	2.00	0.25	Pass
19.95	-0.03	-0.03	-2.00	2.00	0.25	Pass
25.12	-0.03	-0.03	-1.50	2.00	0.25	Pass
31.62	-0.01	-0.01	-1.50	1.50	0.25	Pass
39.81	-0.01	-0.01	-1.00	1.00	0.25	Pass
50.12	-0.06	-0.06	-1.00	1.00	0.25	Pass
63.10	-0.02	-0.02	-1.00	1.00	0.25	Pass
79.43	0.03	0.03	-1.00	1.00	0.25	Pass
100.00	0.00	0.00	-1.00	1.00	0.25	Pass
125.89	-0.05	-0.05	-1.00	1.00	0.25	Pass
158.49	0.03	0.03	-1.00	1.00	0.25	Pass
199.53	0.02	0.01	-1.00	1.00	0.25	Pass
251.19	0.02	0.02	-1.00	1.00	0.25	Pass
316.23	0.14	0.14	-1.00	1,00	0.25	Pass
398.11	-0.10	-0.10	-1.00	1.00	0.25	Pass
501.19	-0.11	-0.11	-1.00	1.00	0.25	Pass
630.96	-0.16	-0.16	-1.00	1.00	0.25	Pass
794.33	-0.12	-0.12	-1.00	1.00	0.25	Pass
1,000.00	0.00	0.00	-0.70	0.70	0.25	Pass
1,258.93	0.35	0.35	-1.00	1.00	0.25	Pass
1,584.89	0.03	0.03	-1.00	1.00	0.25	Pass
1,995.26	-0.25	-0.25	-1.00	1.00	0.25	Pass
2,511.89	-0.06	-0.06	-1.00	1.00	0.25	Pass
3,162.28	-0.04	-0.04	-1.00	1.00	0.25	Pass
3,981.07	-0.20	-0.20	-1.00	1.00	0.25	Pass
5,011.87	-0.06	-0.06	-1.50	1.50	0.25	Pass
6,309.57	-0.37	-0.37	-2.00	1.50	0.25	Pass
7,943.28	-0.07	-0.07	-2.50	1.50	0.25	Pass
10,000.00	0.13	0.13	-3.00	2.00	0.25	Pass
12,589.25	-0.02	-0.02	-5.00	2.00	0.25	Pass
15,848.93	-0.37	-0.37	-16.00	2.50	0.25	Pass
19,952.62	-0.72	-0.72	-inf	3.00	0.25	Pass
		En	d of measurement res			

High Level Stability

Electrical signal test of high level stability performed according to IEC 61672-3:2013 21 and ANSI S1.4-2014 Part 3: 21 for compliance to IEC 61672-1:2013 5.15 and ANSI S1.4-2014 Part 1: 5.15

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
High Level Stability	0.00	-0.10	0.10	0.01 ‡	Pass

Long-Term Stability

Electrical signal test of long term stability performed according to IEC 61672-3:2013 15 and ANSI S1.4-2014 Part 3: 15 for compliance to ISC 61672-1:2013 5.14 and ANSI S1.4-2014 Part 1: 5.14

Test Duration [min]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result	
35	0.00	-0.10	0.10	0.07 ‡	Pass	
	End	of measurement resu	ılts			

1 kHz Reference Levels

Frequency weightings and time weightings at 1 kHz (reference is A weighted Fast) performed according to IEC 61672-3:2013 14 and ANSI S1.4-2014 Part 3: 14 for compliance to IEC 61672-1:2013 5.5.9 and 5.8.3 and ANSI S1.4-2014 Part 1: 5.5.9 and 5.8.3

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
C weight	95.87	95.67	96.07	0.15	Pass
Z weight	95.86	95.67	96.07	0.15	Pass
Slow	95.87	95.77	95.97	0.15	Pass
Impulse	95.87	95.77	95.97	0.15	Pass

A-weighted Broadband Log Linearity: 8,000.00 Hz

Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

Level [dB]	Error [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result	
29.00	0.06	-0.70	0.70	0.16	Pass	
30.00	0.05	-0.70	0.70	0.35	Pass	
31.00	0.03	-0.70	0.70	0.16	Pass	
32.00	0.02	-0.70	0.70	0.16	Pass	
33.00	0.01	-0.70	0.70	0.16	Pass	
34.00	0.00	-0.70	0.70	0.16	Pass	
39.00	-0.01	-0.70	0.70	0.16	Pass	
44.00	-0.03	-0.70	0.70	0.16	Pass	
49.00	-0.02	-0.70	0.70	0.16	Pass	
54.00	-0.02	-0.70	0.70	0.16	Pass	
59.00	-0.02	-0.70	0.70	0.16	Pass	
64.00	-0.02	-0.70	0.70	0.16	Pass	
69.00	-0.02	-0.70	0.70	0.16	Pass	
74.00	-0.02	-0.70	0.70	0.16	Pass	
79.00	-0.03	-0.70	0.70	0.16	Pass	
84.00	0.04	-0.70	0.70	0.16	Pass	
89.00	0.04	-0.70	0.70	0.16	Pass	
94.00	0.02	-0.70	0.70	0.16	Pass	
99.00	0.03	-0.70	0.70	0.16	Pass	
104.00	0.01	-0.70	0.70	0.15	Pass	
109.00	0.01	-0.70	0.70	0.15	Pass	
114.00	0.01	-0.70	0.70	0.15	Pass	
115.00	0.01	-0.70	0.70	0.15	Pass	
116.00	0.01	-0.70	0.70	0.15	Pass	
117.00	0.01	-0.70	0.70	0.15	Pass	
118.00	0.00	-0.70	0.70	0.15	Pass	
119.00	0.01	-0.70	0.70	0.15	Pass	
120.00	-0.02	-0.70	0.70	0.15	Pass	
	End	of measurement resu		0.10	1 000	

Slow Detector

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Amplitude [dB]	Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
113.15	200	-7.54	-7.92	-6.92	0.15	Pass
	2	-27.17	-29.99	-25.99	0.15	Pass

Fast Detector

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Amplitude [dB]	Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
113.15	200.00	-1.06	-1.48	-0.48	0.26	Pass
	2.00	-18.16	-19.49	-16.99	0.15	Pass
	0.25	-27.47	-29.99	-25.99	0.15	Pass
		End	l of measurement resi	ılts		

Sound Exposure Level

Toneburst response performed according to IEC 61672-3:2013 18 and ANSI S1.4-2014 Part 3: 18 for compliance to IEC 61672-1:2013 5.9, IEC 60651:2001 9.4.2, ANSI S1.4:1983 (R2006) 8.4.2 and ANSI S1.4-2014 Part 1: 5.9

Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
200.00	-7.01	-7.49	-6.49	0.15	Pass
2.00	-27.03	-28.49	-25.99	0.15	Pass
0.25	-36.14	-39.02	-35.02	0.15	Pass
	2.00	2.00 -27.03 0.25 -36.14	2.00 -27.03 -28.49 0.25 -36.14 -39.02	2.00 -27.03 -28.49 -25.99	200.00 -7.01 -7.49 -6.49 0.15 2.00 -27.03 -28.49 -25.99 0.15 0.25 -36.14 -39.02 -35.02 0.15

Peak C-weight

C-weighted peak sound level performed according to IEC 61672-3:2013 19 and ANSI S1.4-2014 Part 3: 19 for compliance to IEC 61672-1:2013 5.13 and ANSI S1.4-2014 Part 1: 5.13

Level [dB]	Frequency [Hz]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
111.15	31.50	114.39	111.65	115.65	0.15	Pass
111.15	500.00	114.74	113.65	115.65	0.15	Pass
111.15	8,000.00	113.93	112.55	116.55	0.15	Pass
111.15, Negative	500.00	113.33	112.55	114.55	0.15	Pass
111.15, Positive	500.00	113.29	112.55	114.55	0.15	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Page 8 of 13

D0001.8407 Rev E

Peak Z-weight

Z-weighted peak sound level performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Amplitude [dB]	Duration[µs]	Test F	Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
112.15	100	Negative Pulse	114.37	112.02	116.02	0.15	Pass
	100	Positive Pulse	114.35	112.00	116.00	0.15	Pass
102.15	100	Negative Pulse	104.36	102.01	106.01	0.15	Pass
	100	Positive Pulse	104.36	102.01	106.01	0.15	Pass
92.15	100	Negative Pulse	94.34	91.99	95.99	0.15	Pass
	100	Positive Pulse	94.34	92.00	96.00	0.15	Pass
82.15	100	Negative Pulse	84.34	82.00	86.00	0.15	Pass
	100	Positive Pulse	84.34	82.00	86.00	0.15	Pass
			End of me	asurement results			

Overload Detector

Overload indication performed according to IEC 61672-3:2013 20 and ANSI S1.4-2014 Part 3: 20 for compliance to IEC 61672-1:2013 5.11, IEC 60804:2000 9.3.5, IEC 61252:2002 11, ANSI S1.4 (R2006) 5.8, and ANSI S1.4-2014 Part 1: 5.11, ANSI S1.25 (R2007) 7.6, ANSI S1.43 (R2007) 7

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
Positive	120.70	119.85	121.85	0.15	Pass
Negative	120.70	119.85	121.85	0.15	Pass
Difference	0.00	-1.50	1.50	0.15	Pass
	End of m	easurement results			

Peak Rise Time

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

Duration [μs]		Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
40	Negative Pulse	117.51	116.06	118.06	0.15	Pass
	Positive Pulse	117.42	116.01	118.01	0.15	Pass
30	Negative Pulse	116.60	116.06	118.06	0.15	Pass
	Positive Pulse	116.56	116.01	118.01	0.15	Pass
	40	40 Negative Pulse Positive Pulse 30 Negative Pulse	40 Negative Pulse 117.51 Positive Pulse 117.42 30 Negative Pulse 116.60	40 Negative Pulse 117.51 116.06 Positive Pulse 117.42 116.01 30 Negative Pulse 116.60 116.06	40 Negative Pulse 117.51 116.06 118.06 Positive Pulse 117.42 116.01 118.01 30 Negative Pulse 116.60 116.06 118.06	40 Negative Pulse 117.51 116.06 118.06 0.15 Positive Pulse 117.42 116.01 118.01 0.15 30 Negative Pulse 116.00 116.06 118.06 0.15

Positive Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
114.15	3	OVLD	± 0.50	0.15 ‡	Pass
	5	OVLD	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
104.15	3	-0.15	± 0.50	0.15 ‡	Pass
	5	-0.16	± 1.00	0.16 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
94.15	3	-0.12	± 0.50	0.15 ‡	Pass
	5	-0.11	± 1.00	0.15 ‡	Pass
	10	-0.18	± 1.50	0.15 ‡	Pass
84.15	3	-0.13	± 0.50	0.15 ‡	Pass
	5	-0.14	± 1.00	0.15 ‡	Pass
	10	-0.08	± 1.50	0.15 ‡	Pass
	10		± 1.50 neasurement results-	-	r

Negative Pulse Crest Factor

200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
114.15	3	OVLD	± 0.50	0.15 ‡	Pass
	5	OVLD	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
104.15	3	-0.14	± 0.50	0.15 ±	Pass
	5	-0.11	± 1.00	0.15 ‡	Pass
	10	OVLD	± 1.50	0.15 ‡	Pass
94.15	3	-0.13	± 0.50	0.15 ‡	Pass
	5	-0.10	± 1.00	0.15 ‡	Pass
	10	-0.06	± 1.50	0.15 ‡	Pass
84.15	3	-0.13	± 0.50	0.15 ±	Pass
	5	-0.13	± 1.00	0.15 ±	Pass
	10	-0.08	± 1.50	0.15 ‡	Pass

Tone Burst

2kHz tone burst tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Tone burst response measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

Amplitude [dB]	Crest Factor	Test Result [dB]	Limits [dB]	Expanded Uncertainty [dB]	Result
114.15	3	OVLD	± 0.50	0.15	Pass
	5	OVLD	± 1.00	0.15	Pass
104.15	3	-0.06	± 0.50	0.15	Pass
	5	-0.01	± 1.00	0.15	Pass
94.15	3	-0.05	± 0.50	0.15	Pass
	5	-0.05	± 1.00	0.15	Pass
84.15	3	-0.06	± 0.50	0.15	Pass
	5	0.00	± 1.00	0.15	Pass
		End of m	easurement results-	-	

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Page 10 of 13

D0001.8407 Rev E

Impulse Detector - Repeat

Impulse Detector measured according to IEC 60651:2001 9.4.3 and ANSI S1.4:1983 (R2006) 8.4.3

Amplitude [dB]	Repitition Rate [Hz]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
116.15	100.00	-2.84	-3.71	-1.71	0.15	Pass
	20.00	-7.63	-9.57	-5.57	0.20	Pass
	2.00	-8.89	-10.76	-6.76	0.15	Pass
Step	2.00	4.93	4.00	6.00	0.15	Pass
		- En	d of measurement resu	lts		

Impulse Detector - Single

Impulse Detector measured according to IEC 60651:2001 9.4.3 and ANSI S1.4:1983 (R2006) 8.4.3

Amplitude [dB]	Duration [ms]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
116.15	20.00	-3.74	-5.11	-2.11	0.15	Pass
	5.00	-8.82	-10.76	-6.76	0.16	Pass
	2.00	-12.56	-14.55	-10.55	0.16	Pass
Step	2.00	10.00	9.00	11.00	0.16	Pass

Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

Measurement	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
0 dB Gain	84.02	83.90	84.10	0.15	Pass
0 dB Gain, Linearity	21.19	20.30	21.70	0.16	Pass
OBA Low Range	84.00	83.90	84.10	0.15	Pass
OBA Normal Range	84.00	83.20	84.80	0.15	Pass
	End	l of measurement res	ılts		

Broadband Noise Floor

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

Measurement	Test Result [dB]	Upper limit [dB]	Result
A-weight Noise Floor	7.36	16.00	Pass
C-weight Noise Floor	11.61	18.00	Pass
Z-weight Noise Floor	19.23	25.00	Pass

⁻⁻ End of measurement results--

Total Harmonic Distortion

Measured using 1/3-Octave filters

Measurement	Test Result [dB]	Lower Limit [dB]	Upper Limit [dB]	Expanded Uncertainty [dB]	Result
I0 Hz Signal	113.22	112.35	113.95	0.15	Pass
THD	-56.95		-50.00	0.01 ‡	Pass
ΓHD+N	-55.37		-50.00	0.01 ±	Pass

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North

Provo, UT 84601, United States

716-684-0001

2021-8-24T16:58:14

1/3-Octave Self-Generated Noise

The SLM is set to low range.

Frequency [Hz]	Test Result [dB]	Upper limit [dB]	Result
6.30	8.37	16.30	Pass
8.00	7.46	15.20	Pass
10.00	7.28	14.20	Pass
12.50	6.10	13.20	Pass
16.00	5.60	12.10	Pass
20.00	4.57	11.10	Pass
25.00	3.50	10.40	Pass
31.50	2.56	9.40	Pass
40.00	1.95	8.60	Pass
50.00	0.52	7.40	Pass
63.00	0.22	6.10	Pass
80.00	-0.75	5.00	Pass
100.00	-1.88	4.20	Pass
125.00	-1.96	3.30	Pass
160.00	-2.84	2.40	Pass
200.00	-3.54	1.90	Pass
250.00	-4.43	1.20	Pass
315.00	-4.87	0.60	Pass
400.00	-5.22	0.20	Pass
500.00	-5.72	-0.10	Pass
630.00	-6.09	-0.50	Pass
800.00	-6.10	-0.50	Pass
1,000.00	-6.29	-0.60	Pass
1,250.00	-6.22	-0.60	Pass
1,600.00	-6.16	-0.20	Pass
2,000.00	-5.87	0.20	Pass
2,500.00	-5.56	0.70	Pass
3,150.00	-5.09	1.40	Pass
4,000.00	-4.58	2.10	Pass
5,000.00	-4.02	2.80	Pass
6,300.00	-3.35	3.70	Pass
8,000.00	-2.61	4.60	Pass
10,000.00	-1.86	5.50	Pass
12,500.00	-1.06	6.40	Pass
16,000.00	-0.23	7.40	Pass
20,000.00	0.64	8.30	Pass
		rement results	1 433

-- End of Report--

Signatory: Ron Harris

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

2

CERTIFICATE OF CALIBRATION

Certificate No.:

20CA1119 02-01

Page:

of

Item tested

Description:

Acoustical Calibrator (Class 1)

Manufacturer: Type/Model No.: Larson Davis CAL200

Serial/Equipment No.:

13437

Adaptors used:

-

Item submitted by

Curstomer:

Lam Environmental Services Limited.

Address of Customer:

_

Request No.: Date of receipt:

19-Nov-2020

Date of test:

20-Nov-2020

Reference equipment used in the calibration

Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	11-May-2021	SCL
Preamplifier	B&K 2673	2743150	03-Jun-2021	CEPREI
Measuring amplifier	B&K 2610	2346941	03-Jun-2021	CEPREI
Signal generator	DS 360	33873	19-May-2021	CEPREI
Digital multi-meter	34401A	US36087050	19-May-2021	CEPREI
Audio analyzer	8903B	GB41300350	18-May-2021	CEPREI
Universal counter	53132A	MY40003662	18-May-2021	CEPREI

Ambient conditions

Temperature:

22 ± 1 °C

Relative humidity:

55 ± 10 %

Air pressure:

1005 ± 5 hPa

Test specifications

- The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

Details of the performed measurements are presented on page 2 of this certificate.

Approved Signatory:

Date: 21-Nov-2020

Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument. The results apply to the item as received.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-1/Issue 1/Rev.D/01/03/2007

綜 合 試 驗 有 限 公 司

港新界葵涌永基路22-24號好爸爸創科大廈 Good Ba Ba Hitech Building, Nos. 22-24 Wing Kei Road, Kwai Chung, New Territories, Hong Kong Tel: (852) 2873 6860 Fax: (852) 2555 7533 E-mail: smec@cigismec.com Website: www.cigismec.com

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

20CA1119 02-01

Page:

1, Measured Sound Pressure Level

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties

	(Output level in dB re 20 μPa)
	Estimated Expanded
I	Uncertainty

Frequency Shown	Output Sound Pressure Level Setting	Measured Output Sound Pressure Level	Estimated Expanded Uncertainty
Hz	dB	dB	dB
1000	94.00	93.66	0.10

2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz

STF = 0.013 dB

Estimated expanded uncertainty

0.005 dB

3, **Actual Output Frequency**

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz

Actual Frequency = 1000.1 Hz

Estimated expanded uncertainty

0.1 Hz

Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz

TND = 0.5%

Estimated expanded uncertainty

0.7 %

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Calibrated by:

End

Date:

Funa Chi Yip 20-Nov-2020 Checked by:

Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005